$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC |



Título: O MÉTODO HÍBRIDO DOS ELEMENTOS DE CONTORNO APLICADO A PROBLEMAS TRANSIENTES
Autor: DENILSON RICARDO DE LUCENA NUNES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  NEY AUGUSTO DUMONT - ORIENTADOR
Nº do Conteudo: 2494
Catalogação:  27/03/2002 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2494@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2494@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.2494

Resumo:
Mais de três décadas atrás, Przemieniecki introduziu uma formulação para análise de elementos de barra e treliça baseada em uma expansão em série de freqüências. Recentemente esta formulação foi generalizada para análise de sistemas elásticos submetidos a carregamento qualquer e deslocamentos iniciais. Baseado no método da superposição modal, um sistema acoplado, com equações diferenciais de movimento de alta ordem, é transformado em um sistema desacoplado com equações diferenciais de segunda ordem, que pode ser resolvido por qualquer método conhecido na literatura. A motivação para este desenvolvimento é o Método Híbrido dos Elementos de Contorno, que tem sido desenvolvido para problemas dependentes do tempo e problemas dependentes da freqüência. Esta formulação, assim como a introduzida por Pian para o Método dos Elementos Finitos, obtém uma matriz de rigidez utilizando apenas integrais de contorno, para um domínio de forma qualquer contendo vários graus de liberdade. O uso de termos com freqüências de alta ordem melhora muito a precisão numérica. A análise modal de um problema dinâmico, conforme se apresenta, é aplicável a qualquer formulação de elementos finitos, em geral, desde que a matriz de rigidez generalizada possa ser obtida. Este trabalho é uma tentativa de consolidação da formulação teórica proposta, em que se faz uso de integrais exclusivamente no contorno, com a discussão de diversos casos particulares e a conseqüente avaliação numérica: estruturas restringidas ou não; consideração de deslocamentos e velocidades iniciais, tanto em termos de valores nodais quanto de campos prescritos no domínio (incluindo deslocamentos de corpo rígido); deslocamentos forçados dependentes do tempo; forças de massa dependentes do tempo; cálculo de resultados em pontos internos. Vários exemplos acadêmicos para problemas de potencial bidimensionais ilustram este trabalho.

Descrição Arquivo
CAPA, DEDICATÓRIA, AGRADECIMENTOS, RESUMO, ABSTRACT,SUMÁRIO,LISTA DE FIGURAS,DE SÍMBOLOS,CAPS. 1 E 2  PDF  
CAPÍTULO 3  PDF  
CAPÍTULOS 4, 5 E REFERÊNCIAS BIBLIOGRÁFICAS  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui