$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: LOGLINEAR MODEL ESTIMATION WITH MISSING DATA: AN APPLICATION TO SAEB/99.
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): DENIS PAULO DOS SANTOS

Colaborador(es):  ALVARO DE LIMA VEIGA FILHO - Orientador
Número do Conteúdo: 2493
Catalogação:  27/03/2002 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2493@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2493@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.2493

Resumo:
Generally, in statiscal analysis, missing value in one variable at least, implies the elimination of the respondent unit. That strategy, default in the most of statistical softwares, don´t produce results free from bias, unless the missing data are Missing Completly At Random (MCAR). This dissertation shows the classification about the mechanisms that lead to missing data and the modeling of categorical data dealing with missing data. To do that we combine loglinear model and the EM (Expectation-Maximization)algorithm. This combination produce the agorithm called ECM (Expectation-Conditional Maximization) algorithm. The method is applied to SAEB educational data. The objective is to investigate the relationship between responsable for developing the pedagogic project and the impact on the mean proficiency of school.

Descrição Arquivo
COMPLETE  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui