$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: NEURAL NETWORKS APPLIED TO PROXIES FOR RESERVOIR AND SURFACE INTEGRATED SIMULATION
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): MANOELA RABELLO KOHLER

Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador
EUGENIO DA SILVA - Coorientador
Número do Conteúdo: 23258
Catalogação:  01/08/2014 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=23258@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=23258@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.23258

Resumo:
The development of an oil reservoir consists in finding an alternative of wells that contributes to maximizing the revenue to be obtained from the recovered reservoir oil. The pursuit for this alternative is often based on optimization processes using the net present value (NPV) of the project as the evaluation function of the alternatives found during this pursuit. Among other variables, the NPV calculation is directly dependent on the oil, gas and water production data during the productive life of the reservoir, as well as their development costs. Determine the number, location, type (producer or injector) and the trajectory of wells in a reservoir is a complex optimization problem which depends on a lot of variables, including the reservoir properties (such as porosity and permeability) and economic criteria. The optimization processes applied to this type of problem has a high computational cost due to the continuous use of simulators that reproduce the conditions of the reservoir and the surface system. The use of simulators may be replaced by proxies. At the present work, proxies were constructed using artificial neural networks. The proxies presented here are meant to replace the integrated reservoir, well and surface (production lines and riser) simulation to reduce the computational cost of a decision support system. The samples for the construction of the proxies are produced using reservoir and surface simulators. To reduce the number of samples needed for the proxy construction, and, to reduce the dimension of the problem, Latin Hypercube and Principal Component Analysis are used. The approximators were tested in two oil reservoirs: a synthetic reservoir, and another with real features. The results indicate that these approximators can perform well in replacement of simulators in the optimization process due to low errors found and a substantial decrease in computational cost.

Descrição Arquivo
COMPLETE  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui