$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: RECONHECIMENTO DE VOZ CONTINUA COMBINANDO OS ATRIBUTOS MFCC E PNCC COM METODOS DE ROBUSTEZ SS, WD, MAP E FRN
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): CHRISTIAN DAYAN ARCOS GORDILLO

Colaborador(es):  ABRAHAM ALCAIM - Orientador
Número do Conteúdo: 23090
Catalogação:  09/06/2014 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=23090@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=23090@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.23090

Resumo:
O crescente interesse por imitar o modelo que rege o processo cotidiano de comunicação humana através de maquinas tem se convertido em uma das áreas do conhecimento mais pesquisadas e de grande importância nas ultimas décadas. Esta área da tecnologia, conhecida como reconhecimento de voz, em como principal desafio desenvolver sistemas robustos que diminuam o ruído aditivo dos ambientes de onde o sinal de voz é adquirido, antes de que se esse sinal alimente os reconhecedores de voz. Por esta razão, este trabalho apresenta quatro formas diferentes de melhorar o desempenho do reconhecimento de voz contınua na presença de ruído aditivo, a saber: Wavelet Denoising e Subtração Espectral, para realce de fala e Mapeamento de Histogramas e Filtro com Redes Neurais, para compensação de atributos. Esses métodos são aplicados isoladamente e simultaneamente, afim de minimizar os desajustes causados pela inserção de ruído no sinal de voz. Alem dos métodos de robustez propostos, e devido ao fato de que os e conhecedores de voz dependem basicamente dos atributos de voz utilizados, examinam-se dois algoritmos de extração de atributos, MFCC e PNCC, através dos quais se representa o sinal de voz como uma sequência de vetores que contêm informação espectral de curtos períodos de tempo. Os métodos considerados são avaliados através de experimentos usando os software HTK e Matlab, e as bases de dados TIMIT (de vozes) e NOISEX-92 (de ruído). Finalmente, para obter os resultados experimentais, realizam-se dois tipos de testes. No primeiro caso, é avaliado um sistema de referência baseado unicamente em atributos MFCC e PNCC, mostrando como o sinal é fortemente degradado quando as razões sinal-ruıdo são menores. No segundo caso, o sistema de referência é combinado com os métodos de robustez aqui propostos, analisando-se comparativamente os resultados dos métodos quando agem isolada e simultaneamente. Constata-se que a mistura simultânea dos métodos nem sempre é mais atraente. Porem, em geral o melhor resultado é obtido combinando-se MAP com atributos PNCC.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
CAPÍTULO 7  PDF
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui