$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: ANALYSIS TECHNIQUES FOR CONTROLLING ELECTRIC POWER FOR HIGH FREQUENCY DATA: APPLICATION TO THE LOAD FORECASTING
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): JULIO CESAR SIQUEIRA

Colaborador(es):  REINALDO CASTRO SOUZA - Orientador
Número do Conteúdo: 22444
Catalogação:  08/01/2014 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=22444@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=22444@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.22444

Resumo:
The objective of this study is to develop a statistical algorithm to predict the power transmitted by a thermoelectric power plant in Linhares, located at Espírito Santo state, measured at the entrance of the utility regional grid, which will be integrated to a platform formed by a real time supervisor system developed in MS Windows. To this end we compared Arima (p,d,q), Regression using Orthogonal Polynomials and Exponential Smoothing techniques to identify the best suited approach to make predictions five steps ahead. The data used are observations recorded every 5 minutes, however, the target is to produce these forecasts for observations recorded in every five seconds. The estimated residuals of the fitted model were analysed via control charts to check on the stability of the process. The forecasts produced by this model will be used to help not to exceed the 200.000 kW energy generation upper bound for more than fifteen minutes.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui