$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: TS-TARX: TREE STRUCTURED - THRESHOLD AUTOREGRESSION WITH EXTERNAL VARIABLES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): CHRISTIAN NUNES ARANHA

Colaborador(es):  ALVARO DE LIMA VEIGA FILHO - Orientador
MARCELO CUNHA MEDEIROS - Coorientador
Número do Conteúdo: 2224
Catalogação:  28/01/2002 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2224@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2224@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.2224

Resumo:
This research work proposes a new piecewise linear model to extract knowledge rules from databases. The model is an heuristic based on analysis of regression trees, introduced by Friedman (1979) and discussed in detail by Breiman (1984). The motivation of this research is to come up with a new approach combining both statistical modeling techniques and an efficient split search algorithm. The split decision used in the split search algorithm counts on information from adjusted linear equation and was implemented inspired by the work of Tsay (1989). In his work, he suggests a model-building procedure for a nonlinear time series model called by TAR (threshold autoregressive model), first proposed by Tong (1978) and discussed in detail by Tong and Lim (1980) and Tong (1983). The TAR model is a piecewise linear model which main idea is to set the coefficients of a linear autoregressive process in accordance with a value of observed variable, called by threshold variable. Tsay`s identification of the number and location of the potential thresholds was based on supplementary graphic devices. The idea is to get the whole process automatic on a new model-building process. This process is an algorithm that preserves the method of regression by recursive least squares (RLS) used in Tsay`s work. This regression method allowed the test of all possibilities of data split. Perhaps that is the main advantage of the methodology introduced in this work, seeing that Cooper, S. (1998) said about the impossibility of testing each break.Thus, combining decision tree methodology with a regression technique (RLS), the model became the TS-TARX (Tree Structured - Threshold AutoRegression with eXternal variables). It searches on a binary tree calculating F statistics for variable selection and the information criteria BIC for model selection. In the end, the algorithm produces as result a decision tree and a regression equation adjusted to each regime of the partition defined by the decision tree. Its major advantage is easy interpretation.This research work concludes with some applications in benchmark databases from literature and others that helps the understanding of the algorithm process.

Descrição Arquivo
COMPLETE  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui