INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC



Título: ACOPLAMENTO E INTERAÇÃO MODAL NA INSTABILIDADE DINÂMICA DE CASCAS CILÍNDRICAS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): ZENON JOSE GUZMAN NUNEZ DEL PRADO

Colaborador(es):  PAULO BATISTA GONCALVES - Orientador
Número do Conteúdo: 2061
Catalogação:  31/10/2001 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2061@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2061@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.2061

Resumo:
Com base nas equações de Donnell para cascas abatidas, estudam-se as vibrações não-lineares e a instabilidade dinâmica de cascas cilíndricas carregadas axialmente, considerando o efeito simultâneo de cargas estáticas e harmônicas. Para isto, o problema é primeiro reduzido a um sistema finito de graus de liberdade usando o método de Galerkin. O sistema de equações diferenciais de movimento não-lineares é resolvido através do método de Runge-Kutta. Na análise do fenômeno de acoplamento modal foi usado um modelo com dois graus de liberdade, que reflete de maneira consistente o comportamento pós-crítico inicial da casca. Os resultados obtidos com esse modelo simplificado foram comparados com diversas modelagens encontradas na literatura, permitindo assim aferir o modelo utilizado. Para o estudo da interação modal, escolheram-se três modelos distintos com freqüências e cargas críticas próximas ou semelhantes. Para estudar o comportamento não- linear da casca, diversas estratégias numéricas foram usadas para se obter os mapas de Poincaré, expoentes de Lyapunov, pontos fixos estáveis e instáveis, diagramas de bifurcação e bacias de atração. Particular atenção foi dada a dois fenômenos de instabilidade dinâmica que podem ocorrer sob estas condições de carregamento, a saber: excitação paramétrica dos modos de flexão e escape da bacia de atração pré-flambagem. Os cálculos foram realizados nas regiões principal e secundária de instabilidade paramétrica associadas com a menor freqüência natural da casca. Mostra-se de forma detalhada a determinação dos limites de instabilidade no espaço de controle e a identificação dos mecanismos de escape relacionados com estes limites. Os resultados mostram a importância do acoplamento e da interação modal na solução pós-crítica e no comportamento dinâmico não-linear de cascas cilíndricas.

Descrição Arquivo
CAPA, AGRADECIMENTOS., RESUMO, ABSTRACT, SUMÁRIO, LISTA DE SÍMBOLOS, CAPÍTULOS 1 AO 4   PDF  
CAPÍTULO 5  PDF  
CONTINUAÇÃO DO CAPÍTULO 5  PDF  
CAPÍTULOS 6 E 7  PDF  
CONTINUAÇÃO DO CAPÍTULO 7  PDF  
CONTINUAÇÃO DO CAPÍTULO 7, CAPÍTULO 8, REFERÊNCIAS BIBLIOGRÁFICAS E ANEXOS  PDF  
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui