$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: CLASSIFICAÇÃO DE PÁGINAS WEB POR APRENDIZAGEM DE MÚLTIPLAS CATEGORIAS LATENTES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): FRANCISCO BENJAMIM FILHO

Colaborador(es):  RUY LUIZ MILIDIU - Orientador
Número do Conteúdo: 19540
Catalogação:  17/05/2012 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=19540@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=19540@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.19540

Resumo:
O crescimento explosivo e a acessibilidade generalizada da World Wide Web (WWW) levaram ao aumento da atividade de pesquisa na área da recuperação de informação para páginas Web. A WWW é um rico e imenso ambiente em que as páginas se assemelham a uma comunidade grande de elementos conectada através de hiperlinks em razão da semelhança entre o conteúdo das páginas, a popularidade da página, a autoridade sobre o assunto e assim por diante, sabendo-se que, em verdade, quando um autor de uma página a vincula à outra, está concebendo-a como importante para si. Por isso, a estrutura de hiperlink da WWW é conhecida por melhorar significativamente o desempenho das pesquisas para além do uso de estatísticas de distribuição simples de texto. Nesse sentido, a abordagem Hyperlink Induced Topic Search (HITS) introduz duas categorias básicas de páginas Web, hubs e autoridades, que revelam algumas informações semânticas ocultas a partir da estrutura de hiperlink. Em 2005, fizemos uma primeira extensão do HITS, denominada de Extended Hyperlink Induced Topic Search (XHITS), que inseriu duas novas categorias de páginas Web, quais sejam, novidades e portais. Na presente tese, revisamos o XHITS, transformando-o em uma generalização do HITS, ampliando o modelo de duas categorias para várias e apresentando um algoritmo eficiente de aprendizagem de máquina para calibrar o modelo proposto valendo-se de múltiplas categorias latentes. As descobertas aqui expostas indicam que a nova abordagem de aprendizagem fornece um modelo XHITS mais preciso. É importante registrar, por fim, que os experimentos realizados com a coleção ClueWeb09 25TB de páginas da WWW, baixadas em 2009, mostram que o XHITS pode melhorar significativamente a eficácia da pesquisa Web e produzir resultados comparáveis aos do TREC 2009/2010 Web Track, colocando-o na sexta posição, conforme os resultados publicados.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
REFERÊNCIAS BIBLIOGRÁFICAS  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui