$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: PARALLEL TOPOLOGICAL SUPPORT FOR FINITE ELEMENT MESHES IN DYNAMIC FRACTURE AND FRAGMENTATION ANALYSES
Autor: RODRIGO DE SOUZA LIMA ESPINHA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  WALDEMAR CELES FILHO - ADVISOR
Nº do Conteudo: 17794
Catalogação:  07/07/2011 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=17794@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=17794@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.17794

Resumo:
Fracture propagation and fragmentation phenomena in solids can be described by Cohesive Zone Models and simulated with the Finite Element Method. Among the computational approaches of recent interest for fracture representation in finite element meshes are those based on cohesive elements. In those approaches, fracture behavior is represented by cohesive elements inserted at the interfaces between volumetric (bulk) elements of the original mesh. Cohesive element models can be classified into intrinsic or extrinsic. Intrinsic models require pre-inserted cohesive elements at every volumetric interface in which fracture is allowed to happen. On the other hand, extrinsic models require that cohesive elements be adaptively inserted, wherever and whenever necessary. However, the traditional mesh representation (elements and nodes) is not sufficient for handling adaptive meshes, which makes an appropriate topological support necessary. In general, cohesive models of fracture also require a high level of mesh refinement near crack tips, such that accurate results can be achieved. This implies in memory and processor consumption that may be prohibitive for traditional workstations. Thus, parallel environments become important for the solution of fracture problems. However, due to the difficulties for the parallelization of extrinsic models, the existing approaches use intrinsic models or implement extrinsic simulations based on pre-inserted cohesive elements or cohesive elements represented as attributes of volumetric elements. In order to allow fracture and fragmentation simulations of large models in a simple and efficient way, this thesis proposes the ParTopS system, a parallel topological support for finite element meshes in dynamic fracture and fragmentation analyses. Specifically, a compact and efficient representation of distributed fracture meshes is presented. Cohesive elements are explicitly represented and treated as regular elements in the mesh. Based on the distributed mesh representation, we propose a scalable parallel algorithm for adaptive insertion of cohesive elements in both bidimensional and tridimensional meshes. Symmetrical topological operations are exploited in order to reduce communication among mesh partitions. The ParTopS system has been employed in order to parallelize existing serial extrinsic simulations. The scalability and correctness of the parallel topological support is demonstrated through computational experiments executed on a massively parallel environment. The achieved results show that ParTopS can be effectively applied in order to enable simulations of large models.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT AND SUMMARY  PDF
CHAPTER 1  PDF
CHAPTER 2  PDF
CHAPTER 3  PDF
CHAPTER 4  PDF
CHAPTER 5  PDF
CHAPTER 6  PDF
REFERENCES  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui