$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: PREVISÃO DE CARGA DE CURTÍSSIMO PRAZO NO NOVO CENÁRIO ELÉTRICO BRASILEIRO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): GUILHERME MARTINS RIZZO

Colaborador(es):  REINALDO CASTRO SOUZA - Orientador
Número do Conteúdo: 1738
Catalogação:  19/07/2001 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1738@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1738@2
Referência [es]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1738@4
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.1738

Resumo:
Nesta dissertação é proposto um modelo híbrido para previsão de carga de curtíssimo prazo, combinando amortecimento exponencial simples e redes neurais artificiais do topo feed-forward. O modelo fornece previsões pontuais e limites superiores e inferiores para um horizonte de quinze dias. Estes limites formam um intervalo ao qual pode ser associado um nível de confiança empírico, estimado através de um teste fora da amostra. O desempenho do modelo é avaliado ao longo de uma simulação realizada com dados reais de duas concessionárias de energia elétrica brasileiras.

Descrição Arquivo
NA ÍNTEGRA  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui