$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: POLITOPOS DE GOSSET E OS GRUPOS DE COXETER E(N)
Autor: CAMILLA NERES PEIXOTO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  NICOLAU CORCAO SALDANHA - ORIENTADOR
Nº do Conteudo: 16433
Catalogação:  06/10/2010 Liberação: 06/10/2010 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=16433@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=16433@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.16433

Resumo:
Um politopo convexo é semiregular se todas as suas faces forem regulares e o grupo de isometrias agir transitivamente sobre os vértices. A classificação dos politopos semiregulares inclui algumas famílias infinitas, algumas exceções em dimensão baixa e uma família, os politopos de Gosset, que está definida para dimensão entre 3 e 8. Certos grupos de isometrias de R(n) gerados por reflexões são chamados grupos de Coxeter. A classificação dos grupos de Coxeter inclui três famílias infinitas, algumas exceções em dimensão menor ou igual a 4 e os grupos excepcionais E(6), E(7) e E(8). O grupo E(n) é o grupo das isometrias do politopo de Gosset em dimensao n. Nesta dissertação construiremos os grupos de Coxeter En, os politopos de Gosset e indicaremos a relação destes objetos com os reticulados e as álgebras de Lie também conhecidos como E(n).

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
REFERÊNCIAS BIBLIOGRÁFICAS  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui