$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: KERNEL BASED SHEPARD`S INTERPOLATION METHOD
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): JOANA BECKER PAULO

Colaborador(es):  HELIO CORTES VIEIRA LOPES - Orientador
Número do Conteúdo: 15709
Catalogação:  01/06/2010 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15709@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15709@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.15709

Resumo:
Several real problem in computational modeling require function approximations. In some cases, the function to be evaluated in the computer is very complex, so it would be nice if this function could be substituted by a simpler and efficient one. To do so, the function f is sampled in a set of N pontos {x1, x2, . . . , xN}, where x(i) (is an element of) R(n), and then an estimate for the value of f in any other point is done by an interpolation method. An interpolation method is any procedure that takes a set of constraints and determines a nice function that satisfies such conditions. The Shepard interpolation method originally calculates the estimate of F(x) for some x (is an element of) R(n) as a weighted mean of the N sampled values of f. The weight for each sample xi is a function of the negative powers of the euclidian distances between the point x and xi. Kernels K : R(n) ×R(n) (IN) R are functions that correspond to an inner product on some Hilbert space F that contains the image of the points x and z by a function phi (the empty set) : R(n) (IN) F, i.e. k(x, z) =< phi (the empty set) (x), phi (the empty set) (z) >. In practice, the kernels represent implicitly the mapping phi (the empty set), i.e. it is more suitable to defines which kernel to use instead of which function phi (the empty set). This work proposes a simple modification on the Shepard interpolation method that is: to substitute the euclidian distance between the points x and xi by a distance between the image of these two point by phi (the empty set) in the Hilbert space F, which can be computed directly with the kernel k. Several tests show that such simple modification has better results when compared to the original method.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS  PDF
CHAPTER 1  PDF
CHAPTER 2  PDF
CHAPTER 3  PDF
CHAPTER 4  PDF
CHAPTER 5  PDF
REFERENCES  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui