$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: PREVISÃO DE CARGAS A CURTO PRAZO - UMA AVALIAÇÃO DA VIABILIDADE DO USO DE REDES NEURAIS ARTIFICIAIS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): HENRIQUE STEINHERZ HIPPERT

Colaborador(es):  CARLOS EDUARDO PEDREIRA - Orientador
REINALDO CASTRO SOUZA - Orientador
Número do Conteúdo: 1551
Catalogação:  03/05/2001 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1551@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1551@2
Referência [es]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1551@4
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.1551

Resumo:
A previsão de perfis de carga elétrica (i.e., das séries de cargas a cada hora de um dia) tem sido freqüentemente tentada por meio de modelos baseados em redes neurais. Os resultados conseguidos por estes modelos, contudo, ainda não são considerados inteiramente convincentes. Há duas razões para ceticismo: em primeiro lugar, os modelos sugeridos geralmente se baseiam em redes que parecem ser complexas demais em relação aos dados que pretendem modelar (isto é, estes modelos parecem estar superparametrizados); em segundo lugar, estes modelos geralmente não são bem validados, pois os artigos que os propõem não comparam o desempenho das redes ao de modelos de referência. Nesta tese, examinamos estes dois pontos por meio de revisões críticas da literatura e de simulações, a fim de verificar se é realmente viável a aplicação de redes neurais à previsão de perfis de carga. Nas simulações, construímos modelos bastante complexos de redes e verificamos empiricamente sua validade, pela comparação de seu desempenho preditivo fora da amostra de treino ao desempenho de vários outros modelos de previsão. Os resultados mostram que as redes, mesmo quando muito complexas, conseguem previsões de perfis mais acuradas do que os modelos tradicionais, o que sugere que elas poderão trazer uma grande contribuição para a solução do problema de previsão de cargas.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E CAPÍTULO 1  PDF  
CAPÍTULO 2  PDF  
CAPÍTULO 3  PDF  
CAPÍTULO 4  PDF  
CAPÍTULO 5  PDF  
CAPÍTULO 6  PDF  
CAPÍTULO 7  PDF  
CAPÍTULO 8  PDF  
REFERÊNCIAS BIBLIOGRÁFICAS  PDF  
APÊNDICE 1  PDF  
APÊNDICE 2  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui