As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: DESIGN, OPTIMIZATION, SIMULATION AND PREDICTION OF NANOSTRUCTURES PROPERTIES BY COMPUTATIONAL INTELLIGENCE TECHNIQUES: INTELLIGENT COMPUTATIONAL NANOTECHNOLOGY Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO Autor(es): OMAR PARANAIBA VILELA NETO
Colaborador(es): MARCO AURELIO CAVALCANTI PACHECO - Orientador
ANDRE SILVA PIMENTEL - Coorientador
Número do Conteúdo: 15182
Catalogação: 12/02/2010 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15182@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15182@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.15182
Resumo:
Título: DESIGN, OPTIMIZATION, SIMULATION AND PREDICTION OF NANOSTRUCTURES PROPERTIES BY COMPUTATIONAL INTELLIGENCE TECHNIQUES: INTELLIGENT COMPUTATIONAL NANOTECHNOLOGY Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO Autor(es): OMAR PARANAIBA VILELA NETO
Colaborador(es): MARCO AURELIO CAVALCANTI PACHECO - Orientador
ANDRE SILVA PIMENTEL - Coorientador
Número do Conteúdo: 15182
Catalogação: 12/02/2010 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15182@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15182@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.15182
Resumo:
This thesis investigates the Intelligent Computational Nanotechnology, that is, the
support of Computational Intelligence (CI) techniques in the challenges faced by
the Nanoscience and Nanotechnology. For example, Neural Networks are used for
build Inference systems able to relate a set of input parameters with the final characteristics
of the nanostructures, allowing the researchers foresees the behavior of
other nanostructures not yet realized experimentally. From the inference systems,
Genetic Algorithms are then employees with the intention of find the best set of
input parameters for the synthesis (project) of a desired nanostructure. In another
line of inquiry, the Genetic Algorithms are used for the base functions optimization
used in ab initio calculations. In that case, the exponents of the Gaussian functions
that compose the base functions are optimized. In another approach, the Genetic Algorithms
are applied in the optimization of molecular and atomic clusters, allowing
the researchers to theoretically study the experimentally formed clusters. Finally,
the use of these algorithms, use together with simulators, is applied in the automatic
synthesis of OLEDs and circuits of Quantum Dots Cellular Automata (QCA). This
research revealed the potential of the CI in innovative applications. The hybrid systems
of optimization and inference, for example, conceived to foresee the height, the
density and the height deviation of self-assembled quantum dots, present high levels
of correlation with the experimental results and low percentage errors (lower to
10%). The Young’s module of nanocomposites is also predicted by a similar system
and presents percentage errors even smaller, around 4%. The Genetic Algorithms,
jointly with the package of molecular modeling Gaussian03, optimize the parameters
of functions that generate exponents of primitive Gaussian functions of base
sets for hartree-fock calculations, obtaining smaller energies than those presented
in the literature. In another application, the Genetic Algorithms are also efficient in
the search by the low energy geometries of the atomic clusters of (LiF) nLi +, (LiF)
n and (LiF) nF-, obtaining a set of new isomers yet not propose in the literature. A
similar methodology is applied in an unpublished system for understand the formation
of molecular cluster of ionic H2O from neutral clusters. The results show how
the clusters can be obtained from different perspectives, forming structures not yet
investigate in the scientific area. This work also presents the automatic synthesis of
robust QCA circuits. The circuits obtained present high polarization, similar to those
proposed by the specialists, but with an important reduction in the quantity of cells. Finally, a system involving Genetic Algorithms and an analytic model of multilayer
OLEDs optimize the concentrations of organic material in each layer in order to obtain
more efficient devices. The results reveal a device 9.7% better that the solution
found in the literature, being these results verified experimentally. In summary, the
results of the proposed research allow observe that the unpublished integration of
the techniques of Computational Intelligence with Computational Nanotechnology,
here named Intelligent Computational Nanotechnology, emerges as a promising
alternative for accelerate the researches in Nanoscince and the development of application
in Nanotechnology.