$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: PROJETO, OTIMIZAÇÃO, SIMULAÇÃO E PREDIÇÃO DE PROPRIEDADES DE NANOESTRUTURAS ATRAVÉS DE TÉCNICAS DA INTELIGÊNCIA COMPUTACIONAL: NANOTECNOLOGIA COMPUTACIONAL INTELIGENTE
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): OMAR PARANAIBA VILELA NETO

Colaborador(es):  MARCO AURELIO CAVALCANTI PACHECO - Orientador
ANDRE SILVA PIMENTEL - Coorientador
Número do Conteúdo: 15182
Catalogação:  12/02/2010 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15182@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15182@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.15182

Resumo:
Esta tese investiga a Nanotecnologia Computacional Inteligente, isto é, o apoio de técnicas de Inteligência Computacional (IC) nos desafios enfrentados pela Nanociência e Nanotecnologia. Por exemplo, utilizam-se as Redes Neurais para construir sistemas de inferência capazes de relacionar um conjunto de parâmetros de entrada com as características finais das nanoestruturas, permitindo aos pesquisadores prever o comportamento de outras nanoestruturas ainda não realizadas experimentalmente. A partir dos sistemas de inferência, Algoritmos Genéticos são então empregados com o intuito de encontrar o conjunto ótimo de parâmetros de entrada para a síntese (projeto) de uma nanoestrutura desejada. Numa outra linha de investigação, os Algoritmos Genéticos são usados para a otimização de parâmetros de funções de base para cálculos ab initio. Neste caso, são otimizados os expoentes das funções gaussianas que compõem as funções de base. Em outra abordagem, os Algoritmos Genéticos são aplicados na otimização de agregados atômicos e moleculares, permitindo aos pesquisadores estudar teoricamente os agregados formados experimentalmente. Por fim, o uso destes algoritmos, aliado ao uso de simuladores, é aplicado na síntese automática de OLEDs e circuitos de Autômatos Celulares com Pontos Quânticos (QCA). Esta pesquisa revelou o potencial da IC em aplicações inovadoras. Os sistemas híbridos de otimização e inferência, por exemplo, concebidos para prever a altura, a densidade e o desvio padrão de pontos quânticos auto-organizáveis, apresentam altos níveis de correlação com os resultados experimentais e baixos erros percentuais (inferior a 10%). O módulo de elasticidade de nanocompósitos também é previsto por um sistema semelhante e apresenta erros percentuais ainda menores, entorno de 4%. Os Algoritmos Genéticos, juntamente com o software de modelagem molecular Gaussian03, otimizam os parâmetros de funções que geram expoentes de primitivas gaussianas de funções de base para cálculos hartree-fock, obtendo energias menores do que aquelas apresentadas nas referencias. Em outra aplicação, os Algoritmos Genéticos também se mostram eficientes na busca pelas geometrias de baixa energia dos agregados atômicos de (LiF)nLi+, (LiF)n e (LiF)nF-, obtendo uma série de novos isômeros ainda não propostos na literatura. Uma metodologia semelhante é aplicada em um sistema inédito para entender a formação de agregados moleculares de H2O iônicos, partindo-se de agregados neutros. Os resultados mostram como os agregados podem ser obtidos a partir de diferentes perspectivas, formando estruturas ainda não investigadas na área científica. Este trabalho também apresenta a síntese automática de circuitos de QCA robustos. Os circuitos obtidos apresentam grau de polarização semelhante àqueles propostos pelos especialistas, mas com uma importante redução na quantidade de células. Por fim, um sistema envolvendo Algoritmos Genéticos e um modelo analítico de OLEDs multicamadas otimizam as concentrações de materiais orgânicos em cada camada com o intuito de obter dispositivos mais eficientes. Os resultados revelam um dispositivo 9,7% melhor que a solução encontrada na literatura, sendo estes resultados comprovados experimentalmente. Em resumo, os resultados da pesquisa permitem constatar que a inédita integração das técnicas de Inteligência Computacional com Nanotecnologia Computacional, aqui denominada Nanotecnologia Computacional Inteligente, desponta como uma promissora alternativa para acelerar as pesquisas em Nanociência e o desenvolvimento de aplicações nanotecnológicas.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
CAPÍTULO 7  PDF
CAPÍTULO 8  PDF
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui