$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: LÓGICA E ARITMÉTICA NA FILOSOFIA DA MATEMÁTICA DE FREGE
Autor: ALESSANDRO BANDEIRA DUARTE
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  OSWALDO CHATEAUBRIAND FILHO - ORIENTADOR
Nº do Conteudo: 13942
Catalogação:  30/07/2009 Liberação: 30/07/2009 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13942@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13942@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.13942

Resumo:
Nos Fundamentos da Aritmética (parágrafo 68), Frege propõe definir explicitamente o operador-abstração ´o número de...´ por meio de extensões e, a partir desta definição, provar o Princípio de Hume (PH). Contudo, a prova imaginada por Frege depende de uma fórmula (BB) não provável no sistema em 1884. Acreditamos que a distinção entre sentido e referência e a introdução dos valores de verdade como objetos foram motivada para justificar a introdução do Axioma IV, a partir do qual um análogo de (BB) é provável. Com (BB) no sistema, a prova do Princípio de Hume estaria garantida. Concomitantemente, percebemos que uma teoria unificada das extensões só é possível com a distinção entre sentido e referência e a introdução dos valores de verdade como objetos. Caso contrário, Frege teria sido obrigado a introduzir uma série de Axiomas V no seu sistema, o que acarretaria problemas com a identidade (Júlio César). Com base nestas considerações, além do fato de que, em 1882, Frege provara as leis básicas da aritmética (carta a Anton Marty), parece-nos perfeitamente plausível que as estas provas foram executadas adicionando-se o PH ao sistema lógico de Begriffsschrift. Mostramos que, nas provas dos axiomas de Peano a partir de PH dentro da conceitografia, nenhum uso é feito de (BB). Destarte, não é necessária a introdução do Axioma IV no sistema e, por conseguinte, não são necessárias a distinção entre sentido e referência e a introdução dos valores de verdade como objetos. Disto, podemos concluir que, provavelmente, a introdução das extensões nos Fundamentos foi um ato tardio; e que Frege não possuía uma prova formal de PH a partir da sua definição explícita. Estes fatos também explicam a demora na publicação das Leis Básicas da Aritmética e o descarte de um manuscrito quase pronto (provavelmente, o livro mencionado na carta a Marty).

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT E SUMÁRIO  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui