$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: MODELOS NEURO-FUZZY HIERÁRQUICO BSP PARA CLASSIFICAÇÃO DE PADRÕES E EXTRAÇÃO DE REGRAS FUZZY EM BANCO DE DADOS.
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): LAERCIO BRITO GONCALVES

Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador
MARCO AURELIO CAVALCANTI PACHECO - Orientador
FLAVIO JOAQUIM DE SOUZA - Coorientador
Número do Conteúdo: 1326
Catalogação:  08/03/2001 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1326@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1326@2
Referência [es]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=1326@4
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.1326

Resumo:
Esta dissertação investiga a utilização de sistemas Neuro- Fuzzy Hierárquicos BSP (Binary Space Partitioning) para classificação de padrões e para extração de regras fuzzy em bases de dados. O objetivo do trabalho foi criar modelos específicos para classificação de registros a partir do modelo Neuro-Fuzzy Hierárquico BSP que é capaz de gerar sua própria estrutura automaticamente e extrair regras fuzzy, lingüisticamente interpretáveis, que explicam a estrutura dos dados. O princípio da tarefa de classificação de padrões é descobrir relacionamentos entre os dados com a intenção de prever a classe de um padrão desconhecido. O trabalho consistiu fundamentalmente de quatro partes: um estudo sobre os principais métodos de classificação de padrões; análise do sistema Neuro-Fuzzy Hierárquico BSP (NFHB) original na tarefa de classificação; definição e implementação de dois sistemas NFHB específicos para classificação de padrões; e o estudo de casos. No estudo sobre os métodos de classificação foi feito um levantamento bibliográfico da área, resultando em um "survey" onde foram apresentadas as principais técnicas utilizadas para esta tarefa. Entre as principais técnicas destacaram-se: os métodos estatísticos, algoritmos genéticos, árvores de decisão fuzzy, redes neurais, e os sistemas neuro-fuzzy. Na análise do sistema NFHB na classificação de dados levou- se em consideração as peculiaridades do modelo, que possui: aprendizado da estrutura, particionamento recursivo do espaço de entrada, aceita maior número de entradas que os outros sistemas neuro-fuzzy, além de regras fuzzy recursivas. O sistema NFHB, entretanto, não é um modelo exatamente desenvolvido para classificação de padrões. O modelo NFHB original possui apenas uma saída e para utilizá- lo como um classificador é necessário criar um critério de faixa de valores (janelas) para representar as classes. Assim sendo, decidiu-se criar novos modelos que suprissem essa deficiência. Foram definidos dois novos sistemas NFHB para classificação de padrões: NFHB-Invertido e NFHB-Class. O primeiro utiliza a arquitetura do modelo NFHB original no aprendizado e em seguida a inversão da mesma para a validação dos resultados. A inversão do sistema consistiu de um meio de adaptar o novo sistema à tarefa específica de classificação, pois passou-se a ter o número de saídas do sistema igual ao número de classes ao invés do critério de faixa de valores utilizado no modelo NFHB original. Já o sistema NFHB-Class utilizou, tanto para a fase de aprendizado, quanto para a fase de validação, o modelo NFHB original invertido. Ambos os sistemas criados possuem o número de saídas igual ao número de classes dos padrões, o que representou um grande diferencial em relação ao modelo NFHB original. Além do objetivo de classificação de padrões, o sistema NFHB-Class foi capaz de extrair conhecimento em forma de regras fuzzy interpretáveis. Essas regras são expressas da seguinte maneira: SE x é A e y é B então padrão pertence à classe Z. Realizou-se um amplo estudo de casos, abrangendo diversas bases de dados Benchmark para a tarefa de classificação, tais como: Iris Dataset, Wine Data, Pima Indians Diabetes Database, Bupa Liver Disorders e Heart Disease, e foram feitas comparações com diversos modelos e algoritmos de classificação de padrões. Os resultados encontrados com os modelos NFHB-Invertido e NFHB-Class mostraram-se, na maioria dos casos, superiores ou iguais aos melhores resultados encontrados pelos outros modelos e algoritmos aos quais foram comparados.O desempenho dos modelos NFHB-Invertido e NFHB-Class em relação ao tempo de processamento também se mostrou muito bom. Para todas as bases de dados descritas no estudo de casos (capítulo 8), os modelos convergiram para uma ótima solução de classificação, além da extração das regras fuzzy, em

Descrição Arquivo
CAPA, AGRADEC, RESUMO, ÍNDICE, LISTAS DE FIGS, TABS, CAPS 1,2,3,4,5,6,7, 8 ,9, APÊND 1,2, REF.BIB  PDF  
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui