$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: FORMULAÇÕES DE ELASTICIDADE GRADIENTE PARA ELEMENTOS HÍBRIDOS DE CONTORNO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): DANIEL HUAMAN MOSQUEIRA

Colaborador(es):  NEY AUGUSTO DUMONT - Orientador
Número do Conteúdo: 13048
Catalogação:  13/02/2009 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13048@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13048@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.13048

Resumo:
A modelagem matemática de microdispositivos, em que estrutura e microestrutura têm aproximadamente a mesma escala de magnitude, assim como de macroestruturas de natureza predominantemente granular ou cristalina, requer uma abordagem não-local de deformações e tensões. Há mais de cem anos os irmãos Cosserat já tinham desenvolvido uma teoria de grãos rígidos. No entanto, e sem detrimento de desenvolvimentos devidos a Toupin e outros pesquisadores, os trabalhos de Mindlin na década de 1960 podem ser considerados a base da chamada teoria gradiente de deformações, que se tornou recentemente objeto de um grande número de investigações analíticas e experimentais, motivadas pelo desenvolvimento de novos materiais estruturais e do crescente uso de dispositivos micro- e nanomecânicos na indústria. Mais recentemente, Aifantis e colaboradores conseguiram desenvolver uma teoria gradiente de deformações mais simplificada, com base somente em duas constantes elásticas adicionais, representativas de comprimentos característicos relacionados às energias de deformação superficial e volumétrica. Uma série de trabalhos recentes desenvolvidos por Beskos e colaboradores estendeu o campo de aplicações da proposta inicial de Aifantis e introduziu uma solução fundamental que de fato remonta aos trabalhos de Mindlin. A equipe de pesquisa de Beskos propôs as primeiras implementações 2D e 3D de elementos de contorno para análises de elasticidade gradiente tanto estáticas quanto no domínio da freqüência, inclusive para problemas da mecânica da fratura. Desde o tempo de Toupin e Mindlin procura-se estabelecer uma base variacional da teoria e uma formulação consistente das condições de contorno cinemáticas e de equilíbrio, o que parece ter tido êxito com os recentes trabalhos de Amanatidou e Aravas. Esta dissertação faz uma revisão da teoria gradiente da deformações e apresenta um estudo didático do problema mais simples que se possa conceber, que é o de uma barra sob diferentes tipos de ações axiais (Aifantis, Beskos). A solução fundamental para problemas 2D e 3D também é apresentada e estudada, tanto em termos de forças pontuais aplicadas, para uma implementação em termos de elementos de contorno, quanto de desenvolvimentos polinomiais (no caso estático), para implementação em termos de elementos finitos. Mostra-se que a teoria gradiente de deformação de Aifantis é adequada a uma formulação no contexto do potencial de Hellinger-Reissner, o que possibilita implementações híbridas de elementos finitos e de contorno. O presente trabalho de pesquisa objetiva o estudo do estado da arte no tema, com uma abordagem dos principais problemas de implementação computacional, inclusive em termos das integrais singulares que surgem. O desenvolvimento completo de programas de análise de elementos híbridos finitos e de contorno, para problemas estáticos e dinâmicos, está planejado para uma tese de doutorado em futuro próximo.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
CAPÍTULO 7  PDF
CAPÍTULO 8  PDF
CAPÍTUTO 9  PDF
CAPÍTULO 10  PDF
REFERÊNCIAS BIBLIOGRÁFICAS  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui