INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC



Título: FILTRAGEM COLABORATIVA APLICADA A PUBLICIDADE DIRECIONADA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): ROBERTO PEREIRA CAVALCANTE

Colaborador(es):  RUY LUIZ MILIDIU - Orientador
Catalogação:  27/10/2008 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=12400@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=12400@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.12400

Resumo:
O surgimento da World Wide Web representou uma nova oportunidade de publicidade, disponível para qualquer empresa: A possibilidade de exposição global para uma grande audiência a um custo extremamente pequeno. Como conseqüência disso, surgiu toda uma nova indústria oferecendo serviços relacionados à publicidade de busca, na qual uma empresa anunciante paga por uma posição de destaque em listas de anúncios. A fim de manter a credibilidade e a participação de mercado do serviço que os veicula - por exemplo, uma máquina de busca - os anúncios devem ser exibidos apenas para os usuários que se interessem por eles, no que se chama de Publicidade Direcionada. Em virtude disso, surge a necessidade de se utilizar um sistema de recomendação que seja capaz de escolher que anúncios exibir para quais usuários. Nos sistemas de recomendação baseados em filtragem colaborativa, as preferências de outros usuários são utilizadas como atributos para um sistema de aprendizado, pois estas podem ser bastante detalhadas, gerando recomendações não só para os itens mais populares como também para nichos de itens. Neste trabalho, é desenvolvido um sistema de recomendação de anúncios que aplica Filtragem Colaborativa baseada em fatoração de matrizes ao problema de predição do Click- Through Rate, uma métrica em Publicidade Direcionada que expressa a relevância de um anúncio para os usuários que buscam por uma determinada palavra- chave. A fim de validar o método proposto de predição do Click-Through Rate, realizamos vários experimentos em um conjunto de dados sintéticos. Adicionalmente, o trabalho contribui para o projeto do LearnAds, um framework de recomendação de anúncios baseado em Aprendizado de Máquina.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT E SUMÁRIO  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
REFERÊNCIAS BIBLIOGRÁFICAS  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui