As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: OUTFLOW FORECAST BASED ON ARTIFICIAL NEURAL NETORKS AND WAVELET TRANSFORM Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO Autor(es): MARCELO ALFREDO DE ASSIS FAYAL
Colaborador(es): MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador
CARLOS ROBERTO HALL BARBOSA - Coorientador
Número do Conteúdo: 12169
Catalogação: 08/09/2008 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=12169@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=12169@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.12169
Resumo:
Título: OUTFLOW FORECAST BASED ON ARTIFICIAL NEURAL NETORKS AND WAVELET TRANSFORM Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO Autor(es): MARCELO ALFREDO DE ASSIS FAYAL
Colaborador(es): MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador
CARLOS ROBERTO HALL BARBOSA - Coorientador
Número do Conteúdo: 12169
Catalogação: 08/09/2008 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=12169@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=12169@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.12169
Resumo:
The hydroelectricity system is responsible for 83.7% of the
electric energy generated at Brazil. Therefore, the
generation of electric power in Brazil depends basically on
the natural flow rates distributed by twelve basins in the
country. The quality of prediction of natural flow is of
crucial importance for the Brazilian governmental agency,
ONS (from the portuguese language Electrical National
Operator System), responsible for preparing the forecast
and the generation of scenarios of daily, weekly and
monthly average natural streamflows of all places of
hydroelectric exploitations of SIN (from the portuguese
language National Linked System). The quality of that
forecast impacts directly in the planning and operation
programs of SIN, for example, the PMO (from the portuguese
language Monthly Operation Program). Even with the
improvement in the quality of river flow forecasts through
the creation and adoption of the various deterministic and
stochastic models in recent years, the errors of
forecasting are still significant. Thus, the main goal of
this dissertation was proposing a new model capable
of providing a significant improvement in Streamflow
forecasts in regions of exploitations of hydroelectric
basins of the country. The proposed model, based on neural
networks, has the primary tool the use of wavelet
transforms, to filter streamflows historical data, or the
entries of predict neural networks, dividing the input data
(signals) in several scales, in order that the neural
networks can better analyse them. In order to check the
effectiveness of the proposed model, here called MIP (from
the portuguese language Forecast Intelligent Model), it was
developed a case study to forecast daily and weekly average
of natural incremental streamflows between the
Hydroelectric Plants: Porto Primavera, Rosana e Itaipu
belonging to the the Parana River Basin. The model
reaches up an error of about 3,5% to estimates of
streamflows one day ahead, 16% to 12 days ahead, and 9% for
average weekly forecast. This thesis aims to also
investigate the effectiveness of the use of information of
observed and predicted rainfall in the forecast flow, in
conjunction with the use of the historical streamflows.
Descrição | Arquivo |
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS | |
CHAPTER 1 | |
CHAPTER 2 | |
CHAPTER 3 | |
CHAPTER 4 | |
CHAPTER 5 | |
CHAPTER 6 | |
REFERENCES AND APPENDICES |