$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: PREVISÃO DE VAZÃO POR REDES NEURAIS ARTIFICIAIS E TRANSFORMADA WAVELET
Autor: MARCELO ALFREDO DE ASSIS FAYAL
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
CARLOS ROBERTO HALL BARBOSA - COORIENTADOR

Nº do Conteudo: 12169
Catalogação:  08/09/2008 Liberação: 08/09/2008 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=12169@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=12169@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.12169

Resumo:
O sistema hidroelétrico é responsável por 83,7% da energia elétrica gerada no país. Assim sendo, a geração de energia elétrica no Brasil depende basicamente das vazões naturais que afluem aos aproveitamentos hidroelétricos distribuídos por doze bacias hidrográficas no país. Sendo o Operador Nacional do Sistema Elétrico (ONS) o órgão responsável por elaborar a previsão e a geração de cenários de vazões naturais médias diárias, semanais e mensais para todos os locais de aproveitamentos hidroelétricos do Sistema Interligado Nacional (SIN), a qualidade da previsão da vazão natural é de suma importância para este órgão. A qualidade dessa previsão impacta diretamente no planejamento e em programas de operação do SIN, tal como o Programa Mensal de Operação - PMO. Mesmo com a melhoria na qualidade da previsão de vazões por meio da criação e adoção dos mais diversos modelos determinísticos e estocásticos nos últimos anos, os erros de previsão são, ainda, significativos. Deste modo, o objetivo principal desta dissertação foi propor um novo modelo capaz de proporcionar um significativo ganho de qualidade na previsão de vazões nas regiões dos aproveitamentos hidrelétricos das bacias hidrográficas do país. O modelo proposto, baseado em redes neurais, tem como ferramenta primordial a utilização de transformadas wavelets, que filtram os dados históricos de vazões, ou seja, as entradas das redes neurais de previsão, dividindo esses dados de entrada (sinais) em diversas escalas, no intuito de que as redes neurais possam melhor analisá-los. Para verificar a eficácia do modelo proposto, aqui denominado MIP (Modelo Inteligente de Previsão), procedeu-se um estudo de caso que realiza a previsão de vazões naturais incrementais médias diárias e semanais no trecho incremental entre as Usinas Hidroelétricas (UHE) Porto Primavera, Rosana e Itaipu da Bacia do Rio Paraná, chegando-se a um erro de aproximadamente 3,5% para previsão de vazões um dia à frente, 16% para 12 dias à frente, e 9% para previsão média semanal. Esta dissertação objetiva, também, investigar a eficácia do uso de informações das precipitações observadas e previstas na previsão de vazão, em conjunção com o uso do histórico de vazões.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui