$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: HYBRID OPTIMIZATION SYSTEM FOR THE CONTROL STRATEGIES OF INTELLIGENT WELLS UNDER UNCERTAINTIES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): LUCIANA FALETTI ALMEIDA

Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador
MARCO AURELIO CAVALCANTI PACHECO - Orientador
Número do Conteúdo: 10863
Catalogação:  23/11/2007 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS      trabalho premiado
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10863@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10863@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.10863

Resumo:
The reservoir management is an important task that aims at the optimization of oil reservoir exploitation. To support this challenging mission, the oil and gas industry has been developing new technologies such as intelligent wells. The purpose of these wells is to reduce costs of the most common restoring operations by control of their actuators. Thus, this work deals with intelligent fields development and presents a decision support system able to optimize, by using evolutionary algorithms, the intelligent wells technology control process considering geological and technical uncertainties. In addition, the system gives support for the decision of rather to use or not intelligent wells, given a reservoir ready to be explored or to receive expansion investments. The control of Intelligent Wells Technology (IWT), as applied in this study, refers to the opening and closing operations of valves in these types of wells. An optimization based on genetic algorithms is used to produce a pro-active control strategy, that is, one that anticipates the actions to be taken in present time in order to achieve better results in the future. Such a strategy proposes a valve configuration that will be able to: delay the water cut on producer wells, advance the oil production or benefit the oil recuperation. As a result, the obtained configuration leads to a maximization of the NPV (Net Present Value). The usage of control strategies that aim to benefit completion identifies the oil field as intelligent. Other works also deal with valve control optimization problems in intelligent wells. However, they use classical optimization methods; these methods limit the number of valves or optimize strategies without considering time. The evolutionary model, based on genetic algorithm, applied in this study, can formulate a control strategy for all valves in a certain production configuration, for any desired time interval, according to the economical criteria of NPV maximization. In order to support the decision making for the use or not of intelligent wells, technical and geological uncertainties are considered. The proposed model was evaluated in three oil reservoirs. The first one is a synthetic reservoir, simple and not real; the other two are more complex with close to real characteristics. The results obtained indicate that the proposed model allows good control strategies that increase the NPV. The main contribution of this work is the conception and implementation of a system based on intelligent techniques that is able to support the development and management of intelligent oil reservoirs considering uncertainties.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS  PDF
CHAPTER 1  PDF
CHAPTER 2  PDF
CHAPTER 3  PDF
CHAPTER 4  PDF
CHAPTER 5  PDF
CHAPTER 6  PDF
REFERENCES AND APPENDICES  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui