XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: A FUZZY MODEL FOR MULTITEMPORAL IMAGE CLASSIFICATION Autor: MARIA CLARA DE OLIVEIRA COSTA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
RAUL QUEIROZ FEITOSA - ADVISOR
Nº do Conteudo: 8953
Catalogação: 04/09/2006 Liberação: 04/09/2006 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8953@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8953@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.8953
Resumo:
Título: A FUZZY MODEL FOR MULTITEMPORAL IMAGE CLASSIFICATION Autor: MARIA CLARA DE OLIVEIRA COSTA
Nº do Conteudo: 8953
Catalogação: 04/09/2006 Liberação: 04/09/2006 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8953@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8953@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.8953
Resumo:
This work presents a multitemporal knowledge model for
automatic
classification of remotely sensed images. The model
combines multitemporal and
spectral knowledge within a fuzzy framework. This method
is based on Fuzzy
Markov Chains, a system having a set of states that, at
each time, change the
current state according to the fuzzy possibilities
associated to each one. In this
work each state represents one class, and the
possibilities are automatically
estimated based on historical data by using genetic
algorithms. The experimental
evaluation was carried through for a set of Landsat-5 TM
images of the Rio de
Janeiro State, Brazil, acquired at five dates separated by
approximately four years.
Results indicate that the use of multitemporal knowledge
as modeled by the
proposed method brings an expressive improvement in
efficiency to the
classification, when compared to the pure spectral
classifier. Besides it, adds
flexibility to the classification procedure, concerning to
necessary data used for
model training.
Descrição | Arquivo |
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS | |
CHAPTER 1 | |
CHAPTER 2 | |
CHAPTER 3 | |
CHAPTER 4 | |
CHAPTER 5 | |
REFERENCES |