$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: A MOBILE AND ONLINE OUTLIER DETECTION OVER MULTIPLE DATA STREAMS: A COMPLEX EVENT PROCESSING APPROACH FOR DRIVING BEHAVIOR DETECTION
Autor: IGOR OLIVEIRA VASCONCELOS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARKUS ENDLER - ADVISOR
Nº do Conteudo: 30648
Catalogação:  24/07/2017 Liberação: 03/08/2017 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30648@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30648@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.30648

Resumo:
Driving is a daily task that allows individuals to travel faster and more comfortably, however, more than half of fatal crashes are related to recklessness driving behaviors. Reckless maneuvers can be detected with accuracy by analyzing data related to driver-vehicle interactions, abrupt turns, acceleration, and deceleration, for instance. Although there are algorithms for online anomaly detection, they are usually designed to run on computers with high computational power. In addition, they typically target scale through parallel computing, grid computing, or cloud computing. This thesis presents an online anomaly detection approach based on complex event processing to enable driving behavior classification. In addition, we investigate if mobile devices with limited computational power, such as smartphones, can be used for online detection of driving behavior. To do so, we first model and evaluate three online anomaly detection algorithms in the data stream processing paradigm, which receive data from the smartphone and the in-vehicle embedded sensors as input. The advantages that stream processing provides lies in the fact that reduce the amount of data transmitted from the mobile device to servers/the cloud, as well as reduce the energy/battery usage due to transmission of sensor data and possibility to operate even if the mobile device is disconnected. To classify the drivers, a statistical mechanism used in document mining that evaluates the importance of a word in a collection of documents, called inverse document frequency, has been adapted to identify the importance of an anomaly in a data stream, and then quantitatively evaluate how cautious or reckless drivers maneuvers are. Finally, an evaluation of the approach (using the algorithm that achieved better result in the first step) was carried out through a case study of the 25 drivers driving behavior. The results show an accuracy of 84 percent and an average processing time of 100 milliseconds.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui