XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: Q-LEARNING PESSIMISTA: UM ALGORITMO PARA GERAÇÃO DE BOTS DE JOGOS EM TURNOS Autor: ADRIANO BRITO PEREIRA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
RUY LUIZ MILIDIU - ORIENTADOR
Nº do Conteudo: 28809
Catalogação: 25/01/2017 Liberação: 30/01/2017 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28809@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28809@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.28809
Resumo:
Título: Q-LEARNING PESSIMISTA: UM ALGORITMO PARA GERAÇÃO DE BOTS DE JOGOS EM TURNOS Autor: ADRIANO BRITO PEREIRA
Nº do Conteudo: 28809
Catalogação: 25/01/2017 Liberação: 30/01/2017 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28809@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28809@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.28809
Resumo:
Este documento apresenta um novo algoritmo de aprendizado por reforço, o Q-Learning Pessimista. Nossa motivação é resolver o problema de gerar bots capazes de jogar jogos baseados em turnos e contribuir para obtenção de melhores resultados através dessa extensão do algoritmo Q-Learning. O Q-Learning Pessimista explora a flexibilidade dos cálculos gerados pelo Q-Learning tradicional sem a utilização de força bruta. Para medir a qualidade do bot gerado, consideramos qualidade como a soma do potencial de vitória e empate em um jogo. Nosso propósito fundamental é gerar bots de boa qualidade para diferentes jogos. Desta forma, podemos utilizar este algoritmo para famílias de jogos baseados em turno. Desenvolvemos um framework chamado Wisebots e realizamos experimentos com alguns cenários aplicados aos seguintes jogos tradicionais: TicTacToe, Connect-4 e CardPoints. Comparando a qualidade do Q-Learning Pessimista com a do Q-Learning tradicional, observamos ganhos de 0,8 por cento no TicTacToe, obtendo um algoritmo que nunca perde. Observamos também ganhos de 35 por cento no Connect-4 e de 27 por cento no CardPoints, elevando ambos da faixa de 50 por cento a 60 por cento para 90 por cento a 100 por cento de qualidade. Esses resultados ilustram o potencial de melhoria com o uso do Q-Learning Pessimista, sugerindo sua aplicação aos diversos tipos de jogos de turnos.
Descrição | Arquivo |
NA ÍNTEGRA |