XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: FINE-TUNING SELF-SUPERVISED MODEL WITH SIAMESE NEURAL NETWORKS FOR COVID-19 IMAGE CLASSIFICATION Autor: ANTONIO MOREIRA PINTO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
PAULO IVSON NETTO SANTOS - ADVISOR
Nº do Conteudo: 68699
Catalogação: 03/12/2024 Liberação: 03/12/2024 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68699&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68699&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.68699
Resumo:
Título: FINE-TUNING SELF-SUPERVISED MODEL WITH SIAMESE NEURAL NETWORKS FOR COVID-19 IMAGE CLASSIFICATION Autor: ANTONIO MOREIRA PINTO
Nº do Conteudo: 68699
Catalogação: 03/12/2024 Liberação: 03/12/2024 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68699&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68699&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.68699
Resumo:
In recent years, self-supervised learning has demonstrated state-of-theart performance in domains such as computer vision and natural language processing. However, fine-tuning these models for specific classification tasks,
particularly with labeled data, remains challenging. This thesis introduces a
novel approach to fine-tuning self-supervised models using Siamese Neural
Networks, specifically leveraging a semi-hard triplet loss function. Our method
aims to refine the latent space representations of self-supervised models to
improve their performance on downstream classification tasks. The proposed
framework employs Masked Autoencoders for pre-training on a comprehensive
radiograph dataset, followed by fine-tuning with Siamese networks for effective
feature separation and improved classification. The approach is evaluated on
the COVIDx dataset for COVID-19 detection from frontal chest radiographs,
achieving a new record accuracy of 98.5 percent, surpassing traditional fine-tuning
techniques and COVID-Net CRX 3. The results demonstrate the effectiveness
of our method in enhancing the utility of self-supervised models for complex
medical imaging tasks. Future work will explore the scalability of this approach
to other domains and the integration of more sophisticated embedding-space
loss functions.
Descrição | Arquivo |
COMPLETE |