XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: HYBRID SYSTEM IDENTIFICATION TECHNIQUES: BLACK BOX ALGORITHMS AND GREY BOX APPROACHES FOR REAL DATA SIMULATIONS IN OIL PRODUCTION AND DRILLING SPEED ANALYSIS Autor: DANIEL BOECHAT DE MARINS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
ARTHUR MARTINS BARBOSA BRAGA - ADVISOR
Nº do Conteudo: 68286
Catalogação: 03/10/2024 Liberação: 03/10/2024 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68286&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68286&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.68286
Resumo:
Título: HYBRID SYSTEM IDENTIFICATION TECHNIQUES: BLACK BOX ALGORITHMS AND GREY BOX APPROACHES FOR REAL DATA SIMULATIONS IN OIL PRODUCTION AND DRILLING SPEED ANALYSIS Autor: DANIEL BOECHAT DE MARINS
Nº do Conteudo: 68286
Catalogação: 03/10/2024 Liberação: 03/10/2024 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68286&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68286&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.68286
Resumo:
Industrial environments, especially in the oil and gas sector, presentunique challenges for system identification techniques. Despite advancements,there still exists a gap in our understanding of integrating black box algorithms,grey box approaches, and machine learning for simulating real-world data.With the aim of optimizing understanding and prediction in complex industrialenvironments, real-world data simulation in oil production and drilling speedanalysis was explored. This study proposes an analysis of the integration ofblack box algorithms, grey box approaches, and machine learning in simulatingreal-world data, with an emphasis on oil production and the study of the drill-rock interaction in the oil well drilling process. In this work, machine learningtechniques such as neural networks and classical system identification methods,such as linear models like ARX (AutoRegressive with eXogenous inputs) andnonlinear ones like NARX (Nonlinear AutoRegressive with eXogenous inputs),were employed to capture the dynamic behaviors of the processes understudy. Additionally, real data from oil production and drilling were utilized,considering the specific characteristics and operational challenges of theseenvironments. Based on the results obtained, the techniques used demonstratedapplicability and yielded satisfactory outcomes. Specifically, the use of hybridmodels, combining physical knowledge with multiple model approaches formedby system identification algorithms and machine learning, showed potentialfor enhancing simulation. These findings underscore the effectiveness of thesemethods, suggesting that future research could focus on implementing thistechnique in identifying complex systems.
Descrição | Arquivo |
COMPLETE |