XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: DATA ENRICHMENT BASED ON SIMILARITY GRAPH STATISTICS TO IMPROVE PERFORMANCE IN CLASSIFICATION SUPERVISED ML MODELS Autor: NEY BARCHILON
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
HELIO CORTES VIEIRA LOPES - ADVISOR
Nº do Conteudo: 68124
Catalogação: 19/09/2024 Liberação: 19/09/2024 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68124&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68124&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.68124
Resumo:
Título: DATA ENRICHMENT BASED ON SIMILARITY GRAPH STATISTICS TO IMPROVE PERFORMANCE IN CLASSIFICATION SUPERVISED ML MODELS Autor: NEY BARCHILON
Nº do Conteudo: 68124
Catalogação: 19/09/2024 Liberação: 19/09/2024 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68124&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68124&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.68124
Resumo:
The optimization of supervised machine learning models performancerepresents a constant challenge, especially in contexts with high-dimensionaldatasets or numerous correlated attributes. In this study, we propose a methodfor enriching tabular datasets, based on the use of statistics derived from agraph constructed from the similarity between instances in the dataset, aimingto capture structural correlations among the data. Instances take on the role ofvertices in the graph, while connections between them reflect their similarity.The original feature set (FO) is enriched with statistics extracted from thegraph (FG) to enhance the predictive power of machine learning models. Themethod was evaluated on ten public datasets from different domains, in twodistinct scenarios, across seven machine learning models, comparing predictionon the initial dataset (FO) with the dataset enriched with statistics extractedfrom its graph (FO+FG). The results revealed significant improvements inaccuracy metrics, with an average enhancement of approximately 4.9 percent. Inaddition to its flexibility for integration with existing enrichment techniques,the method presents itself as a effective alternative, particularly in situationswhere original datasets lack the necessary characteristics for traditional graph-based enrichment approaches.
Descrição | Arquivo |
COMPLETE |