$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: MULTILAYER PERCEPTRON FOR CLASSIFYING POLYMERS FROM TENSILE TEST DATA
Autor: HENRIQUE MONTEIRO DE ABREU
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  AMANDA LEMETTE TEIXEIRA BRANDAO - ADVISOR
JOSE ROBERTO MORAES D ALMEIDA - CO-ADVISOR

Nº do Conteudo: 67822
Catalogação:  03/09/2024 Liberação: 05/09/2024 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67822&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67822&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.67822

Resumo:
The tensile test is the most applied mechanical test to obtain the mechanical properties of polymers, which can be used in polymeric materials classification. Through a tensile test is obtained the stress-strain curve, is from which mechanical properties such as the modulus of elasticity, tenacity, and resilience of the material are obtained, which can be used to identify equivalent mechanical behaviors in polymeric materials, whether for the distinguishing plastic waste for recycling or for classifying recycled plastic material according to the content of a polymer type in its composition. However, obtaining mechanical properties from the stress-strain curve involves calculations and adjustments in the intervals of the curve in which these properties are determined, turning it into a complex process without the use of specialized software. By understanding the behavior pattern of a material’s stress-strain curve, machine learning (ML) algorithms can be efficient tools to automate the classification of different types of polymeric materials. To verify the accuracy of an ML algorithm in classifying three types of polymers, tensile tests were performed on specimens made of high-density polyethylene (HDPE), polypropylene (PP), and polyvinyl chloride (PVC). The dataset obtained from the stress-strain curves was used in the training of a multilayer perceptron (MLP) neural network. With an accuracy of 0.9261 for the test set, the model obtained from the MLP neural network was able to classify the polymers based on the stress-strain curve data, thus indicating the possibility of using an ML algorithm to automate the classification of polymeric materials based on tensile test data.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui