XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: DECISION TREES WITH EXPLAINABLE RULES Autor: VICTOR FEITOSA DE CARVALHO SOUZA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
EDUARDO SANY LABER - ADVISOR
Nº do Conteudo: 63537
Catalogação: 04/08/2023 Liberação: 04/08/2023 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=63537&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=63537&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.63537
Resumo:
Título: DECISION TREES WITH EXPLAINABLE RULES Autor: VICTOR FEITOSA DE CARVALHO SOUZA
Nº do Conteudo: 63537
Catalogação: 04/08/2023 Liberação: 04/08/2023 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=63537&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=63537&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.63537
Resumo:
Decision trees are commonly used structures in scenarios where explainable
Machine Learning models are desired, as they are visually intuitive. In
the existing literature, the search for explainability in trees involves minimizing
metrics such as depth and number of nodes. In this context, we define
an explainability metric, called explanation size, which reflects the number of
attributes needed to explain the classification of examples. We also present an
algorithm, called SER-DT, which obtains an O(log n) approximation (optimal
if P different NP) for the minimization of depth in the worst/average case, as well
as of explanation size in the worst/average case. In a series of experiments,
we compared the SER-DT implementation with well-known algorithms in the
field, such as CART and EC2 in addition to testing the impact of parameters
and pruning strategies on these algorithms. SER-DT proved to be competitive
in terms of accuracy with the aforementioned algorithms, but generated much
more explainable trees.
Descrição | Arquivo |
COMPLETE |