$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: DATA ASSIMILATION INTEGRATED WITH IMAGE-TO-IMAGE TRANSLATION NETWORKS APPLIED TO RESERVOIR MODELS.
Autor: VITOR HESPANHOL CORTES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  HELIO CORTES VIEIRA LOPES - ADVISOR
Nº do Conteudo: 62983
Catalogação:  22/06/2023 Liberação: 22/06/2023 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62983&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62983&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.62983

Resumo:
Reservoir model data assimilation is a key step to properly estimate the final recovery of an oil field and, in the last decade, the ensemble smoother with multiple data assimilation method (ES-MDA) has stood out among all available strategies to perform this task. However, this method achieves better results when model parameters are described by an approximately Gaussian distribution and hence presents reduced performance when dealing with categorical parameters, such as geological facies. An alternative to deal with this issue is to adopt a deep learning based approach, particularly using image-to-image translation (I2I) networks and taking into account the analogy between the matrix representation of images and the reservoir model grid properties. Thus, it is possible to adapt I2I network architectures, training them to generate the categorical parameter (facies) from its correlated continuous properties modified by the ES-MDA method (such as porosity and permeability), similar to semantic segmentation tasks in an image translation context. Therefore, the categorical parameter would be indirectly updated by the ES-MDA method, with its reconstruction carried out by the I2I network.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui