XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: DIRECT HYDROCARBON INDICATORS BASED ON LSTM Autor: LUIZ FERNANDO TRINDADE SANTOS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARCELO GATTASS - ADVISOR
Nº do Conteudo: 47319
Catalogação: 02/04/2020 Liberação: 02/04/2020 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47319&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47319&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.47319
Resumo:
Título: DIRECT HYDROCARBON INDICATORS BASED ON LSTM Autor: LUIZ FERNANDO TRINDADE SANTOS
Nº do Conteudo: 47319
Catalogação: 02/04/2020 Liberação: 02/04/2020 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47319&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47319&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.47319
Resumo:
Detecting hydrocarbon reservoirs from a seismic survey is a complex task,
requiring specialized professionals and long time. Consequently, many authors
today seek to automate this task by using deep neural networks. Following the
success of deep convolutional networks, CNNs, in the identification of objects
in images and videos, CNNs have been used as detectors of geological events
in seismic images. Training a deep neural network, however, requires hundreds
of thousands of labeled data, that is, samples that we know the response that
the network must provide. If we treat seismic data as images, the hydrocarbon
reservoirs usually constitute a small sub-image unable to provide so many samples.
The methodology proposed in this dissertation treats the seismic data as a set
of traces and the sample that feeds the neural network are fragments of a onedimensional signal resembling a sound or voice signal. A labeled reservoir seismic
image usually provides the required number of labeled one-dimensional samples for
training. Another important aspect of our proposal is the use of a recurrent neural
network. The influence of a hydrocarbon reservoir on a seismic trace occurs not only
in its location but throughout the trace that follows. For this reason, we propose
the use of a Long Short-Term Memory, LSTM, network to characterize regions
that present gas signatures in seismic images. This dissertation further details the
implementation of the proposed methodology and test results on the Netherlands
F3-Block public seismic data. The results on this data set, evaluated by sensitivity,
specificity, accuracy and AUC indexes, are all excellent, above 95 percent.
Descrição | Arquivo |
COMPLETE |