XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: ALGORITHMS FOR PARTIAL LEAST SQUARES REGRESSION Autor: RAUL PIERRE RENTERIA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
RUY LUIZ MILIDIU - ADVISOR
Nº do Conteudo: 4362
Catalogação: 08/01/2004 Liberação: 08/01/2004 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4362&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4362&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.4362
Resumo:
Título: ALGORITHMS FOR PARTIAL LEAST SQUARES REGRESSION Autor: RAUL PIERRE RENTERIA
Nº do Conteudo: 4362
Catalogação: 08/01/2004 Liberação: 08/01/2004 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4362&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4362&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.4362
Resumo:
The purpose of many problems in the machine learning
field isto model the complex relationship in a system
between the input X and output Y variables when no
theoretical model is available. The Partial Least Squares
(PLS)is one linear method for this kind of problem, for the
case of many input variables when compared to the number of
samples. In this thesis we present versions of the
classical PLS algorithm designed for large data sets while
keeping a good predictive power. Among the main results we
highlight PPLS (Parallel PLS), a parallel version for the
case of only one output variable, and DPLS ( Direct PLS), a
fast and approximate version, for the case fo more than one
output variable. On the other hand, we also present some
variants of the regression algorithm that can enhance the
predictive quality based on a non -linear formulation. We
indroduce LPLS (Lifted PLS), for the case of only one
dependent variable based on the theory of kernel functions,
KDPLS, a non-linear formulation for DPLS, and MKPLS, a
multi-kernel algorithm that can result in a more compact
model and a better prediction quality, thankas to the use
of several kernels for the model bulding.
Descrição | Arquivo |
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS | |
CHAPTER 1 | |
CHAPTER 2 | |
CHAPTER 3 | |
CHAPTER 4 | |
CHAPTER 5 | |
CHAPTER 6 | |
REFERENCES |