XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: HYBRID METHOD BASED INTO KALMAN FILTER AND DEEP GENERATIVE MODEL TO HISTORY MATCHING AND UNCERTAINTY QUANTIFICATION OF FACIES GEOLOGICAL MODELS Autor: SMITH WASHINGTON ARAUCO CANCHUMUNI
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARCO AURELIO CAVALCANTI PACHECO - ADVISOR
ALEXANDRE ANOZE EMERICK - CO-ADVISOR
Nº do Conteudo: 37478
Catalogação: 25/03/2019 Liberação: 25/03/2019 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37478&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37478&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.37478
Resumo:
Título: HYBRID METHOD BASED INTO KALMAN FILTER AND DEEP GENERATIVE MODEL TO HISTORY MATCHING AND UNCERTAINTY QUANTIFICATION OF FACIES GEOLOGICAL MODELS Autor: SMITH WASHINGTON ARAUCO CANCHUMUNI
ALEXANDRE ANOZE EMERICK - CO-ADVISOR
Nº do Conteudo: 37478
Catalogação: 25/03/2019 Liberação: 25/03/2019 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37478&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37478&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.37478
Resumo:
Kalman filter-based methods have had remarkable success in the oil
industry in recent years, especially to solve several real-life history matching
problems. However, as the formulation of these methods is based on the
assumptions of gaussianity and linearity, their performance is severely degraded
when a priori geology is described in terms of complex distributions
(e.g., facies models). The current trend in solutions for the history matching
problem is to take into account more realistic reservoir models, with complex
geology. Thus the geological facies modeling plays an important role in the
characterization of reservoirs as a way of reproducing important patterns
of heterogeneity and to facilitate the modeling of the reservoir rocks petrophysical
properties. This thesis introduces a new methodology to perform
the history matching of complex geological models. This methodology consists
of the integration of Kalman filter-based methods, particularly the
method known in the literature as Ensemble Smoother with Multiple Data
Assimilation (ES-MDA), with a parameterization of the geological facies
through techniques based on deep learning in autoencoder type architectures.
An autoencoder always consists of two parts, the encoder (recognition
model) and the decoder (generator model). The procedure begins with the
training of a set of facies realizations via deep generative models, through
which the main characteristics of geological facies images are identified, allowing
for the creation of new realizations with the same characteristics of
the training base, with a low dimention parametrization of the facies models
at the output of the encoder. This parameterization is regularized at
the encoder to provide Gaussian distribution models in the output, which
is then used to update the models according to the observed data of the
reservoir through the ES-MDA method. In the end, the updated models
are reconstructed through deep learning (decoder), with the objective of
obtaining final models that present characteristics similar to those of the
training base.
The results, in three case studies with 2 and 3 facies, show that the parameterization
of facies models based on deep learning can reconstruct facies
models with an error lower than 0.3 percent. The proposed methodology generates
final geological models that preserve the a priori geological description of
the reservoir (facies with curvilinear channels), besides being consistent with
the adjustment of the observed data of the reservoir.
Descrição | Arquivo |
COMPLETE |