XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: SIMULATION AND STOCHASTIC OPTIMIZATION FOR ENERGY CONTRACTING OF LARGE CONSUMERS Autor: EIDY MARIANNE MATIAS BITTENCOURT
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
DELBERIS ARAUJO LIMA - ADVISOR
Nº do Conteudo: 27918
Catalogação: 09/11/2016 Liberação: 29/11/2016 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27918&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27918&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.27918
Resumo:
Título: SIMULATION AND STOCHASTIC OPTIMIZATION FOR ENERGY CONTRACTING OF LARGE CONSUMERS Autor: EIDY MARIANNE MATIAS BITTENCOURT
Nº do Conteudo: 27918
Catalogação: 09/11/2016 Liberação: 29/11/2016 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27918&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27918&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.27918
Resumo:
The energy contracting in Brazil for large consumers is done according to
the voltage level and considering two environments: the Regulated Environment
and the Free Environment. Large consumers are those characterized by installed
load equal to or greater than 3 MW, supplied at any voltage level and its energy
contract can be chosen between any of these two environments. A major challenge
for these consumers is to determine the best alternative of contracting. To address
this problem, it must be taken into account that the energy consumption and the
required power demand are unknown variables by the time of consumer
contracting, being necessary to estimate them. This dissertation proposes to tackle
this problem by a methodology based on the simulation of future scenarios of
maximum power demand and total consumed energy and on stochastic
optimization of these simulated scenarios in order to define the best contract.
Given the stochastic nature of the problem, it was used the CVaR (Conditional
Value at Risk) as a measure of risk for the optimization problem. To illustrate, the
contracting results were obtained for a large real consumer considering the Green
Tariff group A4 in the Regulated Environment and a quantity contract in the Free
Environment.
Descrição | Arquivo |
COMPLETE |