XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: REDES NEURAIS RECORRENTES E ANÁLISE ESTATÍSTICA MULTIVARIADA PARA PREVISÃO E MEDIÇÃO DA INFLUÊNCIA ENTRE AS VARIÁVEIS DE EMISSÕES E CONSUMO DE COMBUSTÍVEL EM VEÍCULOS Autor: CAIO COUTINHO PALMIERI
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
PAULO IVSON NETTO SANTOS - ORIENTADOR
Nº do Conteudo: 69935
Catalogação: 10/04/2025 Liberação: 10/04/2025 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TRABALHO DE FIM DE CURSO
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=69935&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=69935&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.69935
Resumo:
Título: REDES NEURAIS RECORRENTES E ANÁLISE ESTATÍSTICA MULTIVARIADA PARA PREVISÃO E MEDIÇÃO DA INFLUÊNCIA ENTRE AS VARIÁVEIS DE EMISSÕES E CONSUMO DE COMBUSTÍVEL EM VEÍCULOS Autor: CAIO COUTINHO PALMIERI
Nº do Conteudo: 69935
Catalogação: 10/04/2025 Liberação: 10/04/2025 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TRABALHO DE FIM DE CURSO
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=69935&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=69935&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.69935
Resumo:
Este trabalho desenvolve modelos preditivos baseados em Redes Neurais Recorrentes (RNNs) e Long Short-Term Memory (LSTM) para prever emissões de poluentes e consumo de combustível em veículos, utilizando dados históricos como hodômetro e tipo
de combustível. As RNNs e LSTMs, por sua capacidade de capturar padrões complexos em séries temporais, são aplicadas para identificar tendências e prever comportamentos futuros, contribuindo para a eficiência energética e a redução de emissões. Além disso, uma análise estatística multivariada com o Random Forest e outros algoritmos, como AdaBoost e Gradient Boost, é realizada para avaliar a influência das variáveis independentes na variável alvo, permitindo identificar fatores críticos que impactam no desempenho veicular. A combinação dessas técnicas de aprendizado de máquina e ciência de dados oferece soluções robustas e inovadoras, promovendo o desenvolvimento sustentável ao enfrentar desafios ambientais e econômicos relacionados à poluição atmosférica e à otimização do setor de transporte.
Descrição | Arquivo |
NA ÍNTEGRA |