$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: CLUSTERIZAÇÃO SOB RESTRIÇÕES: EXPLICABILIDADE VIA ÁRVORES DE DECISÃO E SEPARABILIDADE COM TAMANHO MÍNIMO
Autor: LUCAS SAADI MURTINHO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  EDUARDO SANY LABER - ORIENTADOR
Nº do Conteudo: 69655
Catalogação:  18/03/2025 Liberação: 21/03/2025 Idioma(s):  INGLÊS - ESTADOS UNIDOS
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=69655&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=69655&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.69655

Resumo:
Investigamos dois métodos de clusterização com restrições nas partições geradas: a clusterização explicável, em que a partição deve ser induzida por uma árvore de decisão binária (ou seja, por cortes paralelos aos eixos); e a clusterização de tamanho mínimo, na qual todos os clusters devem ter pelo menos um número predeterminado de elementos. Para a clusterização explicável, apresentamos algoritmos e garantias teóricas para as funções de custo k-centers, k-medians, k-means e espaçamento mínimo. Introduzimos também três algoritmos práticos para a popular função de custo k-means: ExGreedy, com resultados geralmente melhores do que os de algoritmos comparáveis na literatura; ExShallow, com um termo de penalidade relacionado à profundidade da árvore que induz a partição, permitindo um equilíbrio entre desempenho (redução da função de custo) e explicabilidade (geração de árvores mais rasas); e ExBisection, que, até onde sabemos, é o primeiro algoritmo de clusterização explicável baseado em árvores de decisão para a função de custo k-means que constrói uma partição explicável do zero (ou seja, sem usar uma partição irrestrita como ponto de partida). Para a clusterização de tamanho mínimo, focamos em medidas interclusterização. Mostramos que Single-Linkage, o algoritmo que maximiza o espaçamento mínimo, também maximiza o custo da árvore de geração mínima de um grafo induzido pela partição gerada por ele; no entanto, este algoritmo tende a gerar muitos clusters pequenos, o que motiva a busca por algoritmos com bons resultados para essas funções de custo que garantam um número mínimo de elementos por cluster. Introduzimos um algoritmo de aproximação para cada função de custo e apresentamos os resultados de experimentos que mostram que eles produzem partições com melhores resultados do que o popular algoritmo k-means para essas instâncias do problema de clusterização.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui