$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: APLICAÇÃO DE APRENDIZADO DE MÁQUINAS PARA DETECÇÃO DE IMPERFEIÇÕES GEOMÉTRICAS EM VIGAS
Autor: FERNANDO VIANNA BRASIL MEDEIROS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  LUIZ CARLOS WROBEL - ORIENTADOR
Nº do Conteudo: 67414
Catalogação:  23/07/2024 Liberação: 23/07/2024 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67414&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67414&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.67414

Resumo:
O monitoramento da integridade estrutural aumenta de importância dentro do campo de estudo de engenharia civil. Grande parte das cidades dependem de elementos de sua infraestrutura como pontes, barragens e prédios para prover uma série de benefícios para a sociedade moderna. Por outro lado, mesmo o projeto mais conservador não resiste aos efeitos do tempo. Uma boa rotina de manutenção preventiva não exime a necessidade de se ter uma constante verificação e busca de falhas pois em alguns casos isto poderia permitir em catástrofes de grande escala envolvendo grande perda material e até mesmo vidas. Graças ao desenvolvimento tecnológico das últimas décadas foi possível pesquisar e criar ferramentas poderosas que podem ajudar problemas deste tipo. O objetivo desta dissertação é avaliar a aplicação de métodos de Inteligência Artificial na detecção de danos em vigas. A metodologia utiliza parâmetros modais de elementos estruturais para verificar a presença de danos relacionados a redução de rigidez de uma seção transversal. Mais especificamente, os métodos apresentados neste estudo são orientados por dados, então primeiramente o banco de dados para treino e validação dos métodos de IA foi gerado por um programa em Python dentro do software de elementos finitos Abaqus. Os parâmetrosd modais analisados foram as cinco primeiras frequências naturais das vigas. Foi possível avaliar a performance dos métodos de IA para classificação da presença ou não de danos em diferentes métricas de análise. Por fim, uma comparação paramétrica foi feita entre os modelos de Inteligência Artificial.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui