$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: ENGENHARIA DE REQUISITOS PARA SISTEMAS INTEGRADOS COM COMPONENTES DE APRENDIZADO DE MÁQUINA: STATUS QUO E PROBLEMA
Autor: ANTONIO PEDRO SANTOS ALVES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARCOS KALINOWSKI - ORIENTADOR
DANIEL MENDEZ FERNANDEZ - COORIENTADOR

Nº do Conteudo: 65995
Catalogação:  06/02/2024 Liberação: 06/02/2024 Idioma(s):  INGLÊS - ESTADOS UNIDOS
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65995&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65995&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.65995

Resumo:
Sistemas que usam Aprendizado de Máquina, doravante Machine Learning (ML), tornaram-se comuns para empresas que deseajam melhorar seus produtos, serviços e processos. A literatura sugere que a Engenharia de Requisitos (ER) pode ajudar a explicar muitos problemas relacionados à engenharia de sistemas inteligentes envolvendo componentes de ML (ML-Enabled Systems). Contudo, o cenário atual de evidências empíricas sobre como ER é aplicado na prática no contexto desses sistemas é amplamente dominado por estudos de casos isolados com pouca generalização. Nós conduzimos um survey internacional para coletar informações de profissionais sobre o status quo e problemas de ER para ML-Enabled Systems. Coletamos 188 respostas completas de 25 países. Realizamos uma análise quantitativa sobre as práticas atuais utilizando bootstrapping com intervalos de confiança; e análises qualitativas sobre os problemas reportados através de procedimentos de codificação open e axial. Encontramos diferenças significativas nas práticas de ER no contexto de projetos de ML, algumas já reportadas na literatura e outras totalmente novas. Por exemplo, (i) atividades relacionadas à ER são predominantemente conduzidas por líderes de projeto e cientistas de dados, (ii) o formato de documentação predominante é baseado em Notebooks interativos, (iii) os principais requisitos não-funcionais incluem qualidade dos dados, confiança e explicabilidade no modelo, e (iv) os principais desafios consistem em gerenciar a expectativa dos clientes e alinhar requisitos com os dados disponíveis. As análises qualitativas revelaram que os praticantes enfrentam problemas relacionados ao baixo entendimento sobre o domínio do negócio, requisitos pouco claros e baixo engajamento do cliente. Estes resultados ajudam a melhorar o entendimento sobre práticas adotadas e problemas existentes em cenários reais. Destacamos a necessidade para adaptar ainda mais e disseminar práticas de ER relacionadas à engenharia de ML-Enabled Systems.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui