XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: TÉCNICAS DE PROCESSAMENTO DE SINAIS PARA APRENDIZAGEM DISTRIBUÍDA COM EFICIÊNCIA ENERGÉTICA Autor: ALIREZA DANAEE
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
RODRIGO CAIADO DE LAMARE - ORIENTADOR
VITOR HELOIZ NASCIMENTO - COORIENTADOR
Nº do Conteudo: 61745
Catalogação: 11/01/2023 Liberação: 11/01/2023 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61745&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61745&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.61745
Resumo:
Título: TÉCNICAS DE PROCESSAMENTO DE SINAIS PARA APRENDIZAGEM DISTRIBUÍDA COM EFICIÊNCIA ENERGÉTICA Autor: ALIREZA DANAEE
VITOR HELOIZ NASCIMENTO - COORIENTADOR
Nº do Conteudo: 61745
Catalogação: 11/01/2023 Liberação: 11/01/2023 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61745&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61745&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.61745
Resumo:
As redes da Internet das Coisas (IdC) incluem dispositivos inteligentes que contêm muitos sensores que permitem interagir com o mundo físico, coletando e processando dados de streaming em tempo real. O consumo total de energia e o custo desses sensores afetam o consumo de energia
e o custo dos dispositivos IdC. O tipo de sensor determina a precisão da
interface analógica e a resolução dos conversores analógico-digital (ADCs). A
resolução dos ADCs tem um compromisso entre a precisão de inferência e o
consumo de energia, uma vez que o consumo de energia dos ADCs depende
do número de bits usados para representar amostras digitais.
Nesta tese, apresentamos um esquema de aprendizado distribuído com eficiência
energética usando sinais quantizados para redes da IdC. Em particular,
desenvolvemos algoritmos de gradiente estocástico com reconhecimento de
quantização distribuído (DQA-LMS) e de mínimos quadrados recursivos com
reconhecimento de quantização distribuído (DQA-RLS) que podem aprender
parâmetros de maneira eficiente em energia usando sinais quantizados com
poucos bits, exigindo um baixo custo computacional. Além disso, desenvolvemos
uma estratégia de compensação de viés para melhorar ainda mais o
desempenho dos algoritmos propostos. Uma análise estatística dos algoritmos
propostos juntamente com uma avaliação da complexidade computacional
das técnicas propostas e existentes é realizada. Os resultados numéricos
avaliam os algoritmos com reconhecimento de quantização distribuída em
relação às técnicas existentes para uma tarefa de estimação de parâmetros
em que os dispositivos IdC operam em um modo ponto a ponto.
Também apresentamos um esquema de aprendizado federativo com eficiência
energética usando sinais quantizados para redes de IdC. Desenvolvemos o
algoritmo federated averaging LMS (QA-FedAvg-LMS) com reconhecimento
de quantização para redes IdC estruturadas por configuração de aprendizado
federativo em que os dispositivos IdC trocam suas estimativas com um
servidor. Uma estratégia de compensação de viés para QA-FedAvg-LMS é
proposta junto com sua análise estatística e a avaliação de desempenho em
relação às técnicas existentes com resultados numéricos.
Descrição | Arquivo |
NA ÍNTEGRA |