$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: ENSAIOS SOBRE VOLATILIDADE E PREVISIBILIDADE DE RETORNOS
Autor: IURI HONDA FERREIRA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARCELO CUNHA MEDEIROS - ORIENTADOR
RUY MONTEIRO RIBEIRO - COORIENTADOR

Nº do Conteudo: 60253
Catalogação:  18/08/2022 Liberação: 18/08/2022 Idioma(s):  INGLÊS - ESTADOS UNIDOS
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60253&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60253&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.60253

Resumo:
Essa tese é composta por três artigos em econometria financeira. Os dois primeiros artigos exploram a relação entre retornos intradiários do mercado de equities e a implied volatility, representada pelo Índice de Volatilidade da CBOE (VIX). Nos dois artigos, estimamos previsões um minuto à frente utilizando janelas rolantes para cada dia. No primeiro artigo, as estimativas indicam que nossos modelos de fatores de volatilidade têm uma performance superior a benchmarks tradicionais em uma análise de séries de tempo em alta frequência, mesmo aos excluirmos períodos de crise da amostra. Os resultados também indicam uma performance fora da amostra maior para dias em que não ocorrem anúncios macroeconômicos. A performance é ainda maior quando removemos períodos de crise. O segundo artigo propõe uma abordagem de aprendizado de máquinas para modelar esse exercício de previsão. Implementamos um método de estimação intradiário minuto a minuto com janelas móveis, utilizando dois tipos de modelos não lineares: redes neurais com Long-Short-Term Memory (LSTM) e Random Forests (RF). Nossas estimativas mostram que o VIX é o melhor previsor de retornos de mercado intradiários entre os candidatos na nossa análise, especialmente quando implementadas através do modelo LSTM. Esse modelo também melhora significativamente a performance quando utilizamos o retorno de mercado defasado como variável preditiva. Finalmente, o último artigo explora uma extensão multivariada do método FarmPredict, combinando modelos vetoriais autoregressivos aumentados em fatores (FAVAR) e modelos esparsos em um ambiente de alta dimensão. Utilizando um procedimento de três estágios, somos capazes de estimar e prever fatores e seus loadings, que podem ser observados, não observados ou ambos, assim como uma estrutura idiossincrática fracamente esparsa. Realizamos uma aplicação dessa metodologia em um painel de volatilidades realizadas e os resultados de performance do método em etapas indicam melhorias quando comparado a benchmarks consolidados.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui