XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: UM FRAMEWORK BASEADO EM MODELO PARA CLUSTERIZAÇÃO SEMISSUPERVISIONADA E DETECÇÃO DE COMUNIDADES Autor: DANIEL LEMES GRIBEL
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
THIBAUT VICTOR GASTON VIDAL - ORIENTADOR
MICHEL GENDREAU - COORIENTADOR
Nº do Conteudo: 54595
Catalogação: 09/09/2021 Liberação: 09/09/2021 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54595&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54595&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.54595
Resumo:
Título: UM FRAMEWORK BASEADO EM MODELO PARA CLUSTERIZAÇÃO SEMISSUPERVISIONADA E DETECÇÃO DE COMUNIDADES Autor: DANIEL LEMES GRIBEL
MICHEL GENDREAU - COORIENTADOR
Nº do Conteudo: 54595
Catalogação: 09/09/2021 Liberação: 09/09/2021 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54595&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54595&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.54595
Resumo:
Em clusterização baseada em modelos, o objetivo é separar amostras de
dados em grupos significativos, otimizando a aderência dos dados observados a
um modelo matemático. A recente adoção de clusterização baseada em modelos
tem permitido a profissionais e usuários mapearem padrões complexos nos
dados e explorarem uma ampla variedade de aplicações. Esta tese investiga
abordagens orientadas a modelos para detecção de comunidades e para o estudo
de clusterização semissupervisionada, adotando uma perspectiva baseada em
máxima verossimilhança. Focamos primeiramente na exploração de técnicas
de otimização com restrições para apresentar um novo modelo de detecção de
comunidades por meio de modelos de blocos estocásticos (SBMs). Mostramos
que a formulação com restrições revela comunidades estruturalmente diferentes
daquelas obtidas com modelos clássicos. Em seguida, estudamos um cenário
onde anotações imprecisas são fornecidas na forma de relações must-link e
cannot-link, e propomos um modelo de clusterização semissupervisionado.
Nossa análise experimental mostra que a incorporação de supervisão parcial
e de conhecimento prévio melhoram significativamente os agrupamentos. Por
fim, examinamos o problema de clusterização semissupervisionada na presença
de rótulos de classe não confiáveis. Investigamos o caso em que grupos de
anotadores deliberadamente classificam incorretamente as amostras de dados
e propomos um modelo para lidar com tais anotações incorretas.
Descrição | Arquivo |
NA ÍNTEGRA |