XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: PREVISÕES DE PERMEABILIDADE UTILIZANDO PERFIS À POÇO ABERTO E DADOS DE TESTE DE FORMAÇÃO: UMA ABORDAGEM COM APRENDIZADO DE MÁQUINAS Autor: CIRO DOS SANTOS GUIMARAES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
IVAN FABIO MOTA DE MENEZES - ORIENTADOR
HELIO CORTES VIEIRA LOPES - COORIENTADOR
Nº do Conteudo: 52393
Catalogação: 26/04/2021 Liberação: 26/04/2021 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=52393&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=52393&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.52393
Resumo:
Título: PREVISÕES DE PERMEABILIDADE UTILIZANDO PERFIS À POÇO ABERTO E DADOS DE TESTE DE FORMAÇÃO: UMA ABORDAGEM COM APRENDIZADO DE MÁQUINAS Autor: CIRO DOS SANTOS GUIMARAES
HELIO CORTES VIEIRA LOPES - COORIENTADOR
Nº do Conteudo: 52393
Catalogação: 26/04/2021 Liberação: 26/04/2021 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=52393&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=52393&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.52393
Resumo:
Este trabalho investiga o desempenho de modelos inteligentes na previsão de permeabilidade de reservatórios heterogêneos. Perfis de produção são utilizados para computar funções-objetivo para regressão no processo de otimização dos algoritmos. Um método de interpretação de perfil de produção é usado para remover efeitos de skin das medições de vazão. Adicionalmente, uma técnica de segmentação é aplicada a perfis de imagem acústica de alta resolução que fornecem, não apenas a imagem do sistema de mega e giga poros, mas também identifica fácies permeáveis ao longo do reservatório. A segmentação da imagem junto com outros perfis a poço aberto fornece os atributos necessários para o processo de treinamento do modelo. As estimativas apresentadas neste trabalho demonstram a habilidade dos algoritmos em aprender relações não lineares entre as variáveis geológicas e os dados dinâmicos de reservatório, mesmo quando a própria relação física é complexa e desconhecida à priori. Apesar das etapas de pré-processamento envolverem experiência em interpretação de dados, os algoritmos podem ser facilmente implementados em qualquer linguagem de programação, não assumindo qualquer premissa física de antemão. O procedimento proposto fornece curvas de permeabilidades mais acuradas que aquelas obtidas a partir de métodos convencionais que muitas vezes falham em prever a permeabilidade medida em testes de formação (TFR) realizados em reservatórios de dupla-porosidade. A contribuição deste trabalho é incorporar os dados dinâmicos oriundos dos perfis de produção (PP) ao processo de estimativa de permeabilidade usando algoritmos de Machine Learning.
Descrição | Arquivo |
NA ÍNTEGRA |