XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: PREVENDO EMPREGO E DESEMPREGO NOS EUA. UMA COMPARAÇÃO ENTRE MODELOS Autor: MARCOS LOPES MUNIZ
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARCELO CUNHA MEDEIROS - ORIENTADOR
Nº do Conteudo: 50302
Catalogação: 12/11/2020 Liberação: 12/11/2020 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50302&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50302&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.50302
Resumo:
Título: PREVENDO EMPREGO E DESEMPREGO NOS EUA. UMA COMPARAÇÃO ENTRE MODELOS Autor: MARCOS LOPES MUNIZ
Nº do Conteudo: 50302
Catalogação: 12/11/2020 Liberação: 12/11/2020 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50302&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50302&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.50302
Resumo:
Prever emprego e desemprego é de grande importância para praticamente
todos os agentes de uma economia. Emprego é uma das principais
variáveis analisadas como indicador econômico, e desemprego serve para os
policy makers como uma orientação às suas decisões. Neste trabalho, eu
estudo quais características das duas séries podemos usar para auxiliar no
tratamento dos dados e métodos empregados para auxiliar no poder preditivo
das mesmas. Eu comparo modelos de machine (Random Forest e
Lasso Adaptativo) e Deep (Long short Term memory) learning, procurando
capturar as não linearidades e dinâmicas de ambas séries. Os resultados
encontrados sugerem que o modelo AR com Random Forest aplicado nos
resíduos, como uma maneira de separar parte linear e não linear, é o melhor
modelo para previsão de emprego, enquanto Random Forest e AdaLasso com
Random Forest aplicado nos resíduos são os melhores para o desemprego.
Descrição | Arquivo |
NA ÍNTEGRA |