$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: ESTRUTURAS ARITMÉTICAS EM CONJUNTOS ALEATÓRIOS
Autor: MATHEUS SECCO TORRES DA SILVA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  SIMON RICHARD GRIFFITHS - ORIENTADOR
Nº do Conteudo: 49323
Catalogação:  08/09/2020 Liberação: 08/09/2020 Idioma(s):  INGLÊS - ESTADOS UNIDOS
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=49323&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=49323&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.49323

Resumo:
Nesta tese de Doutorado, nós estudamos cotas para as probabilidades de desvio de uma variável aleatória X que conta o número de arestas de um hipergrafo induzido por um subconjunto aleatório de m elementos do seu conjunto de vértices. Nós consideramos dois contextos: o primeiro corresponde a hipergrafos que possuem certo tipo de regularidade, ao passo que o segundo lida com hipergrafos que são, em algum sentido, longe de serem regulares. É possível aplicar estes resultados a estruturas discretas, como o conjunto de progressões aritméticas de tamanho k no grupo aditivo de inteiros módulo um primo e também no conjunto dos N primeiros inteiros positivos. Além disso, também deduzimos resultados para o caso em que o subconjunto aleatório é gerado incluindo cada vértice do hipergrafo independentemente com probabilidade p.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui