XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: ENSEMBLE SEQUENCIAL CENTRADO EM MODELOS PARA DETECÇÃO DE OUTLIERS NO CONTEXTO DE MARKETING SCIENCE Autor: REBECCA PORPHIRIO DA COSTA DE AZEVEDO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
HELIO CORTES VIEIRA LOPES - ORIENTADOR
Nº do Conteudo: 36998
Catalogação: 19/02/2019 Liberação: 19/02/2019 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36998&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36998&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.36998
Resumo:
Título: ENSEMBLE SEQUENCIAL CENTRADO EM MODELOS PARA DETECÇÃO DE OUTLIERS NO CONTEXTO DE MARKETING SCIENCE Autor: REBECCA PORPHIRIO DA COSTA DE AZEVEDO
Nº do Conteudo: 36998
Catalogação: 19/02/2019 Liberação: 19/02/2019 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36998&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36998&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.36998
Resumo:
O desenvolvimento visto nos últimos anos em dispositivos móveis tem tornado dramático o aumento na quantidade de dados e informações disponíveis para publicitários ao redor do mundo. Custo computacional e tempo disponível para processar dados e ser capaz de distinguir verdadeiros usuários de anomalias ou ruído têm crescido. Assim, a criação de um método para detecção de outliers poderia apoiar melhor os pesquisadores de Marketing e aumentar sua precisão na compreensão do comportamento digital. Estudos atuais mostram que, até o momento, o uso de meta-algoritmos tem sido pouco usado para detecção de outliers. Meta-algoritmos tendem a trazer benefícios porque reduzem a dependência que um único algoritmo pode gerar. Esta dissertação propõe um design de meta-algoritmo que utiliza diferentes algoritmos para obter resultados de detecção de outliers melhores do que aqueles obtidos por apenas um único algoritmo: centrado em modelo e sequencial. A novidade da abordagem consiste em (i) explorar a técnica sequencial, utilizando algoritmos que são aplicados sequencialmente, no qual um algoritmo impacta o próximo e o resultado final é uma combinação dos resultados obtidos; (ii) centralizar a performance no modelo e não nos dados, o que significa que o ensemble é aplicado a todo o conjunto de dados ao mesmo tempo e; (iii) apoiar pesquisadores de marketing que precisem operar ciência de dados de forma mais robusta e coerente.
Descrição | Arquivo |
NA ÍNTEGRA |