XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: QUASE PERIODICIDADE E A POSITIVIDADE DOS EXPOENTES DE LYAPUNOV Autor: LUCAS BARBOSA GAMA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
SILVIUS KLEIN - ORIENTADOR
Nº do Conteudo: 36075
Catalogação: 11/01/2019 Liberação: 14/01/2019 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36075&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36075&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.36075
Resumo:
Título: QUASE PERIODICIDADE E A POSITIVIDADE DOS EXPOENTES DE LYAPUNOV Autor: LUCAS BARBOSA GAMA
Nº do Conteudo: 36075
Catalogação: 11/01/2019 Liberação: 14/01/2019 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36075&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36075&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.36075
Resumo:
O teorema de Benedicks e Carleson afirma que para a família quadrática existe um conjunto de parâmetros, com medida positiva, para os quais o expoente de Lyapunov é positivo no ponto crítico. Nesta dissertação apresentamos uma demonstração rigorosa e detalhada desse célebre resultado. Uma parte importante da demonstração é o estudo do comportamento quase periódico de um conjunto de órbitas. Além disso, um argumento de grandes desvios é utilizado para mostrar que os parâmetros que não satisfazem a propriedade desejada formam um conjunto pequeno. Tais técnicas apresentam um interesse intrínseco, já que têm se mostrado muito proveitosas para o estudo de outros problemas em sistemas dinâmicos. Combinando o teorema de Benedicks e Carleson ao teorema de Singer, conclui-se que para
um conjunto de parâmetros com medida positiva, a função quadrática correspondente não admite atratores periódicos, indicando um comportamento caótico. Neste trabalho, também são estudados critérios para a positividade do expoente de Lyapunov de cociclos quase periódicos de Schrodinger, como o teorema de Herman. O estudo de cociclos de Schrodinger representa um importante tópico na área de física matemática. Mais ainda, algumas das generalizações de tais critérios utilizam as técnicas de Benedicks-Carleson.
Descrição | Arquivo |
NA ÍNTEGRA |