XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: ALGORITMO GENÉTICO HÍBRIDO PARA O PROBLEMA DE CLUSTERIZAÇÃO MINIMUM SUM-OF-SQUARES Autor: DANIEL LEMES GRIBEL
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
THIBAUT VICTOR GASTON VIDAL - ORIENTADOR
Nº do Conteudo: 30724
Catalogação: 27/07/2017 Liberação: 07/08/2017 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30724&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30724&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.30724
Resumo:
Título: ALGORITMO GENÉTICO HÍBRIDO PARA O PROBLEMA DE CLUSTERIZAÇÃO MINIMUM SUM-OF-SQUARES Autor: DANIEL LEMES GRIBEL
Nº do Conteudo: 30724
Catalogação: 27/07/2017 Liberação: 07/08/2017 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30724&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30724&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.30724
Resumo:
Clusterização desempenha um papel importante em data mining, sendo útil em muitas áreas que lidam com a análise exploratória de dados, tais como recuperação de informações, extração de documentos e segmentação de imagens. Embora sejam essenciais em aplicações de data mining, a maioria
dos algoritmos de clusterização são métodos ad-hoc. Eles carecem de garantias na qualidade da solução, que em muitos casos está relacionada a uma convergência prematura para um mínimo local no espaço de busca. Neste trabalho, abordamos o problema de clusterização a partir da perspectiva de otimização, onde propomos um algoritmo genético híbrido para resolver o problema Minimum Sum-of-Squares Clustering (MSSC, em inglês). A meta-heurística proposta é capaz de escapar de mínimos locais e gerar soluções quase ótimas para o problema MSSC. Os resultados mostram que o método proposto superou os resultados atuais da literatura – em termos de qualidade da solução – para quase todos os conjuntos de instâncias considerados para o problema MSSC.
Descrição | Arquivo |
NA ÍNTEGRA |