Funções de Deslocamento da Viga de Cosserat

2.1 Introdução

Este capítulo da tese é orientada à análise das condições do equilíbrio estático da deformação tridimensional de uma viga elástica. A teoria unidimensional que é empregada, e que pode ser chamada de teoria de Cosserat especial para vigas, possui várias virtudes: é geometricamente exata, isto é, não é desenvolvida usando aproximações geométricas ou suposições mecânicas. Para a deformação da viga, adoptam-se as hipóteses de Bernoulli, nas quais, são empregadas relações constitutivas lineares. Por outro lado, a configuração deformada da viga é descrita por um vetor de deslocamento da curva de centróides deformada e uma base ortogonal móvel, rigidamente unida à secção transversal da viga. A orientação da base móvel, em relação à base inercial, é parametrizada usando três rotações elementares consecutivas. No sentido da teoria de Cosserat, as equações de movimento são equações diferenciais parciais não-lineares, que estão em função do tempo e de uma variável espacial. No entanto, para o equilíbrio estático, a equação torna-se uma equação diferencial ordinária com uma variável espacial, que pode ser resolvida usando técnicas standard, como o método de perturbação, para satisfazer as condições de contorno. Este capítulo é um passo preliminar para o estudo da dinâmica de estruturas flexíveis como as colunas de perfuração curvas.

O problema fundamental da formulação usando o MEF é a escolha das funções de deslocamento. Tradicionalmente usam-se as soluções aproximadas das equações do movimento não-linear, no sentido quase estático, como funções de deslocamento para a análise dinâmica.

2.2 Convenções e Notações

Por simplicidade na nomenclatura, adotam-se as seguintes convenções: os subíndices minúsculos em letras latinas, exceto *s*, dmitem valores 1, 2, 3 e expressões que contêm dois índices em letras latinas repetidas representam somas de 1 a 3, p. ex. $m_i n_i = m_1 n_1 + m_2 n_2 + m_3 n_3$.

No decorrer do trabalho usa-se a notação ${}^{R}\mathbf{r} = \begin{bmatrix} r_1 & r_2 & r_3 \end{bmatrix}^{T}$ para representar o vetor \mathbf{r} escrito na base (R) e $r = \sqrt{r_1^2 + r_2^2 + r_3^2}$ é a norma Euclidiana do vetor. A partir desse vetor é possível definir uma matriz anti-simétrica na seguinte forma:

$${}^{R}\tilde{\mathbf{r}} = \begin{bmatrix} 0 & -r_{3} & r_{2} \\ r_{3} & 0 & -r_{1} \\ -r_{2} & r_{1} & 0 \end{bmatrix}$$

O uso dessa matriz simplifica a operação do produto vetorial; por exemplo, um possível produto dos vetores ${}^{R}\mathbf{b} \ e \ {}^{R}\mathbf{r} \ \acute{e} \ {}^{R}\mathbf{b} \times ({}^{R}\mathbf{b} \times {}^{R}\mathbf{r}) = {}^{R}\tilde{\mathbf{b}}^{R}\tilde{\mathbf{b}}^{R}\mathbf{r} =$ ${}^{R}\tilde{\mathbf{b}}^{2R}\mathbf{r}$. Vale também a seguinte relação: ${}^{R}\tilde{\mathbf{b}}^{R}\mathbf{r} = -{}^{R}\tilde{\mathbf{r}}^{R}\mathbf{b}$. Poderiamos ter omitido a indicação da base (R) já que a equação deve ser toda calculada na mesma base.

Quando se trabalha com matrizes, a notação ${}^{A}\mathbf{T}^{B}$ é usada para representar a matriz de rotação, ou seja, a matriz que transforma um vetor escrito na base (B) para sua representação numa outra base (A): ${}^{A}\mathbf{b} = {}^{A}\mathbf{T}^{BB}\mathbf{b}$ ou inversamente ${}^{B}\mathbf{b} = {}^{B}\mathbf{T}^{AA}\mathbf{b}$; a matriz ${}^{A}\mathbf{T}^{B}$ é uma matriz ortogonal. Para representar a matriz identidade é empregado o símbolo \mathbf{E} .

No decorrer deste capítulo, as notações $\frac{d(\cdot)}{ds}$ e ()' são usadas para representar, respectivamente, as derivadas total e local em relação ao parâmetro s.

2.3 Funções de Deslocamento

Quando se usa o método dos elementos finitos, sabe-se que uma boa seleção da função de deslocamento é a parte mais importante de todo o procedimento. Uma boa função de deslocamento levará à obtenção de um elemento de alta precisão e com características convergentes, enquanto por outro lado, a escolha de uma função de deslocamento ruim levará a resultados pobres ou não convergentes, ou pior ainda, convergirá para resultados incorretos. A função de deslocamento pode ser dada como (i) um polinômio simples com coeficientes indeterminados que posteriormente são transformados em deslocamentos nodais; ou (ii) diretamente em termos de funções de forma, que têm valor nulo em todos os outros nós do elemento, mas valor unitário para o deslocamento ou sua derivada no nó em consideração. Fisicamente as funções de forma associadas com os parâmetros do deslocamento nodal fornecem um campo de deslocamentos para o elemento, quando o deslocamento de um nó particular é unitário e os outros são nulos. Sendo assim, a função de deslocamento pode ser dada na forma (i) como:

$$f(x,y) = A_1 + A_2x + A_3y + \dots$$

sendo A_i constantes polinomiais indeterminadas, ou de (ii) como:

$$f(x,y) = N_1(x,y)f_1 + N_2(x,y)f_2 + N_3(x,y)f_3 + \dots$$

sendo f_i os parâmetros de deslocamento nodal e N_i as correspondentes funções de forma (p. ex. polinômios de Lagrange, de Hermite). Uma discussão profunda e bem detalhada sobre funções de deslocamento é descrita no livro de Cheung [8].

2.4 A Viga de Cosserat

Para modelar os efeitos inerciais da viga, uma base Cartesiana fixa é usada $F(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) \equiv F$ com vetores unitários \mathbf{e}_i .

Na teoria de Cosserat o comportamento de uma viga esbelta é modelado em termos do movimento no espaço da linha de centróides de sua secção transversal, definida pelo vetor $\mathbf{r}(s)$ e por um conjunto ortogonal de linhas materiais chamadas diretores da secção transversal $\{\mathbf{d}_1(s), \mathbf{d}_2(s), \mathbf{d}_3(s)\}$, Fig. 2.1. Ao longo desses diretores define-se a base $S(\mathbf{d}_1(s), \mathbf{d}_2(s), \mathbf{d}_3(s)) \equiv S$ com vetores unitários ortogonais $\mathbf{d}_i(s)$, sendo que a coordenada s representa a distância ao longo da linha de centróides da viga não deformada. A base (S) pode ser interpretada como uma base móvel ao longo da curva de centróides, parametrizada pela coordenada s.

Os diretores $\mathbf{d}_i(s)$ estão associados a cada ponto da curva de centróides. Os vetores $\mathbf{d}_1(s)$ e $\mathbf{d}_2(s)$ estão contidos no plano da seção transversal e portanto $\mathbf{d}_3(s)$ é perpendicular a ele. Por definição, para deformação por cisalhamento puro, a normal em cada secção transversal, ou seja, o vetor $\mathbf{d}_3(s)$, não coincide com a tangente à curva de centróides nesse

Figura 2.1: Viga especial de Cosserat.

ponto, $\frac{d \mathbf{r}(s)}{ds}$. Contrariamente, para o caso de flexão pura, o vetor $\mathbf{d}_3(s)$ em cada ponto da curva de centróides coincide com a tangente da curva de centróides naquele ponto. É necessário ressaltar que os diretores $\mathbf{d}_i(s)$ são definidos externamente à curva $\mathbf{r}(s)$, isto é, os diretores $\mathbf{d}_i(s)$ contêm informação adicional à curva de centróides. Assim, os diretores possuem características diferentes da base de Frenet-Serret, que é formada a partir da tangente, normal e binormal da curva de centróides e é definida por $\mathbf{r}(s)$ e suas derivadas.

2.4.1 Cinemática

Para a análise da viga adotam-se am mesmas suposições feitas por Rubin [28], ou seja, são consideradas as hipóteses de Bernoulli, conseqüentemente, a seção transversal plana sofre somente rotação rígida e mantém-se plana durante a deformação, preservando sua forma e área.

Na base inercial (F) a configuração deformada da linha de centróides $\mathbf{r}(s)$ é definida como:

$${}^{F}\mathbf{r}(s) = \begin{bmatrix} x(s) & y(s) & z(s) \end{bmatrix}^{T}$$
(2-1)

Na teoria de Cosserat, as deformações da viga são classificadas em dois grupos: deformações lineares $\mathbf{v}(s)$ e deformações angulares $\mathbf{u}(s)$ que na base (S) são definidas como:

$${}^{S}\mathbf{v}(s) = \begin{bmatrix} v_1(s) & v_2(s) & v_3(s) \end{bmatrix}^T$$
(2-2)

$${}^{S}\mathbf{u}(s) = \begin{bmatrix} u_1(s) & u_2(s) & u_3(s) \end{bmatrix}^{T}$$
(2-3)

As componentes das deformações lineares e angulares $\{v_i(s), u_i(s)\}$

adotam diferentes nomes: as componentes $v_1(s) \in v_2(s)$ são chamadas de deformações de cisalhamento e $v_3(s)$ de elongação; em forma análoga, $u_1(s)$ e $u_2(s)$ são descritas como deformações de flexão e $u_3(s)$ é chamada de deformação de torção.

Vetor de Deformação Linear: O vetor de deformação linear $\mathbf{v}(s)$ é obtido da variação da linha de centróides ao longo da coordenada s:

$${}^{F}\mathbf{v}(s) = \frac{d {}^{F}\mathbf{r}(s)}{ds} = \begin{bmatrix} x'(s) & y'(s) & z'(s) \end{bmatrix}^{T}$$
(2-4)

sendo que ()' representa a derivada local em relação ao parâmetro s.

Em geral, como resultado da deformação de cisalhamento da viga, a secção transversal deformada não é perpendicular à linha de centróides, mas, para vigas esbeltas como a coluna de perfuração, o efeito de cisalhamento pode ser desprezado. Conseqüentemente, a secção transversal da viga é suposta perpendicular à tangente da linha de centróides.

Desprezando a deformação por cisalhamento, o vetor unitário $\mathbf{d}_3(s)$ é ortogonal ao plano da secção transversal, e este plano é perpendicular à tangente da linha de centróides, ou seja:

$${}^{F}\mathbf{v}(s) = \frac{d {}^{F}\mathbf{r}(s)}{ds} = r'(s) {}^{F}\mathbf{d}_{3}(s)$$
(2-5)

sendo $r'(s) = \sqrt{(x'(s))^2 + (y'(s))^2 + (z'(s))^2}$. Logo, representando o vetor unitário $\mathbf{d}_3(s)$ nas bases $(S) \in (F)$, resulta:

$${}^{S}\mathbf{d}_{3}(s) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T}$$

$${}^{F}\mathbf{d}_{3}(s) = \begin{bmatrix} \nu_{1}(s) & \nu_{2}(s) & \nu_{3}(s) \end{bmatrix}^{T}$$

$$(2-6)$$

e a seguinte relação é válida:

$$\nu_1^2(s) + \nu_2^2(s) + \nu_3^2(s) = 1 \tag{2-7}$$

Das Eqs. (2-5) e (2-6) obtém-se:

$$\nu_1(s) = \frac{x'(s)}{r'(s)}, \quad \nu_2(s) = \frac{y'(s)}{r'(s)}, \quad \nu_3(s) = \frac{z'(s)}{r'(s)}$$
(2-8)

Vetor de Deformação Angular: O vetor de deformação angular $\mathbf{u}(s)$ é calculado em forma análoga à matriz antisimétrica da velocidade angular quando a derivação, em relação ao tempo, é realizada em uma base

móvel. Neste caso, a variação da coordenada s produz deformação angular que é dada pela matriz antisimétrica $\tilde{\mathbf{u}}(s)$ em:

$$\frac{d \mathbf{d}_i(s)}{ds} = \tilde{\mathbf{u}}(s)\mathbf{d}_i(s) \tag{2-9}$$

A equação acima pode ser escrita nas bases (F) ou (S). Em um primeiro passo transforma-se a Eq. (2-9) em:

$$\tilde{\mathbf{d}}_i(s)\frac{d\,\mathbf{d}_i(s)}{ds} = \tilde{\mathbf{d}}_i(s)\tilde{\mathbf{u}}(s)\mathbf{d}_i(s) = -\tilde{\mathbf{d}}_i^2(s)\mathbf{u}(s), \quad i = 1, 2, 3$$

logo, usando a base (S) e somando nas três coordenadas:

$$\sum_{i=1}^{i=3} \left({}^{S} \tilde{\mathbf{d}}_{i}(s) \frac{d {}^{S} \mathbf{d}_{i}(s)}{ds} \right) = -\sum_{i=1}^{i=3} \left({}^{S} \tilde{\mathbf{d}}_{i}^{2}(s) \right) {}^{S} \mathbf{u}(s) = 2 \mathbf{E} {}^{S} \mathbf{u}(s) = 2 \mathbf{E} {}^{S} \mathbf{u}(s)$$

finalmente, usando a convenção de indices repetidos:

$${}^{S}\mathbf{u}(s) = \frac{1}{2}{}^{S}\tilde{\mathbf{d}}_{i}(s)\frac{d {}^{S}\mathbf{d}_{i}(s)}{ds} \quad \text{ou} \quad {}^{F}\mathbf{u}(s) = \frac{1}{2}{}^{F}\tilde{\mathbf{d}}_{i}(s)\frac{d {}^{F}\mathbf{d}_{i}(s)}{ds} \tag{2-10}$$

A equação acima é valida para qualquer sistema de referência e é análoga ao teorema de Mozzi [6], sendo que $\mathbf{u}(s)$ é como se fosse um vetor de "velocidade angular" que porém representa evolução em relação ao parâmetro s ao invés do tempo t.

2.4.2

Representação dos Diretores d_i em Termos do Vetor de Rotação e três Rotações Elementares

Na teoria especial de Cosserat, a descrição cinemática da viga requer a determinação do campo de rotações da seção transversal. É aqui que está a maior dificuldade para resolver a equação de equilíbrio, porque as rotações a tornam fortemente não-lineares. Para descrever o campo de rotações, ou seja, as relações entre a base de diretores (S) e a base fixa (F), empregamse dois métodos: o vetor de rotação (ou vetor de Euler) e três rotações elementares (rotações subsequentes sobre eixos coordenados).

Vetor de Rotação: A base (S) é parametrizada usando rotações consecutivas:

$$F(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) \xrightarrow{\theta \ (\mathbf{p})} D(\mathbf{d}_1', \mathbf{d}_2', \mathbf{d}_3' \equiv \mathbf{d}_3) \xrightarrow{\varphi \ (\mathbf{d}_3)} S(\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3)$$

sendo $D(\mathbf{d}'_1, \mathbf{d}'_2, \mathbf{d}'_3) \equiv D$ uma base intermediária.

Figura 2.2: Parametrização dos diretores usando vetor de rotação.

Para chegar à base (S), começando de (F), primeiro é necessário obter a base intermediária (D). Isto é realizado girando a base (F) em torno do vetor unitário $\mathbf{p}(s)$ de um ângulo θ como se pode observar na Fig. 2.2. Isto significa que entre as direções $\mathbf{e}_3 \in \mathbf{d}_3(s)$ existe um ângulo θ . O vetor $\mathbf{p}(s)$ é ortogonal ao plano *OABC*, formado por $\mathbf{e}_3 \in \mathbf{d}_3(s)$, e é paralelo ao plano formado por $\mathbf{e}_1 \in \mathbf{e}_2$. Conseqüentemente ${}^F\mathbf{p}(s) = \begin{bmatrix} p_1(s) & p_2(s) & 0 \end{bmatrix}^T$. Também, o vetor unitário $\mathbf{p}(s)$ satisfaz as relações:

$$p_1^2(s) + p_2^2(s) = 1$$

 ${}^F \mathbf{p}^T(s)^F \mathbf{d}_3(s) = p_1(s)\nu_1(s) + p_2(s)\nu_2(s) = 0$

Logo, resolvendo para $p_i(s)$ as equações acima, as componentes do vetor unitário ${}^{F}\mathbf{p}(s)$ são:

$${}^{F}\mathbf{p}(s) = \begin{bmatrix} \frac{-\nu_{2}(s)}{\sqrt{\nu_{1}^{2}(s) + \nu_{2}^{2}(s)}} & \frac{\nu_{1}(s)}{\sqrt{\nu_{1}^{2}(s) + \nu_{2}^{2}(s)}} & 0 \end{bmatrix}^{T}$$
(2-11)

Para calcular a matriz de rotação ${}^{F}\mathbf{T}^{D}$, usa-se a seguinte equação [65]:

$${}^{F}\mathbf{T}^{D} = \mathbf{E} + \sin\theta {}^{F}\tilde{\mathbf{p}}(s) + (1 - \cos\theta) {}^{F}\tilde{\mathbf{p}}^{2}(s)$$

As funções $\sin \theta = \cos \theta$ são encontradas usando as definições de produto escalar e produto vetorial entre os vetores $\mathbf{e}_3 \in {}^{F}\mathbf{d}_3(s)$, isto é:

$$\begin{vmatrix} \tilde{\mathbf{e}}_3 \ ^F \mathbf{d}_3(s) \end{vmatrix} = \sin \theta = \sqrt{\nu_1^2(s) + \nu_2^2(s)} \\ \mathbf{e}_3^T \ ^F \mathbf{d}_3(s) = \cos \theta = \nu_3(s) \end{aligned}$$

conseqüentemente, a matriz de rotação resulta:

$${}^{F}\mathbf{T}^{D} = \begin{bmatrix} \frac{\nu_{2}^{2} + \nu_{3}\nu_{1}^{2}}{\nu_{1}^{2} + \nu_{2}^{2}} & \frac{(\nu_{3} - 1)\nu_{1}\nu_{2}}{\nu_{1}^{2} + \nu_{2}^{2}} & \nu_{1} \\ \frac{(\nu_{3} - 1)\nu_{1}\nu_{2}}{\nu_{1}^{2} + \nu_{2}^{2}} & \frac{\nu_{1}^{2} + \nu_{3}\nu_{2}^{2}}{\nu_{1}^{2} + \nu_{2}^{2}} & \nu_{2} \\ -\nu_{1} & -\nu_{2} & \nu_{3} \end{bmatrix}$$
(2-12)

Finalmente, para alcançar a base (S), a base (D) é girada em torno do vetor unitário ${}^{D}\mathbf{d}_{3} = {}^{S}\mathbf{d}_{3} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T}$ de um ângulo $\varphi(s)$ e a matriz de rotação associada é dada por:

$${}^{D}\mathbf{T}^{S} = \begin{bmatrix} \cos\varphi(s) & -\sin\varphi(s) & 0\\ \sin\varphi(s) & \cos\varphi(s) & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(2-13)

Usando as matrizes de rotação obtidas acima, é possível representar qualquer vetor \mathbf{r} na base inercial (F) ou na base dos diretores (S) através da relação:

$${}^{F}\mathbf{r} = {}^{F}\mathbf{T}^{DD}\mathbf{r} = {}^{F}\mathbf{T}^{DD}\mathbf{T}^{SS}\mathbf{r} = {}^{F}\mathbf{T}^{SS}\mathbf{r}$$

Resumindo, a matriz de rotação ${}^{F}\mathbf{T}^{S} = {}^{F}\mathbf{T}^{DD}\mathbf{T}^{S}$ resulta (por simplicidade $\nu_{i}(s) = \nu_{i}, \ \varphi(s) = \varphi$):

$${}^{F}\mathbf{T}^{S} = \begin{bmatrix} \frac{(\nu_{2}^{2}+\nu_{3}\nu_{1}^{2})\cos\varphi}{\nu_{1}^{2}+\nu_{2}^{2}} + \frac{(\nu_{3}-1)\nu_{1}\nu_{2}\sin\varphi}{\nu_{1}^{2}+\nu_{2}^{2}} & \frac{(\nu_{3}-1)\nu_{1}\nu_{2}\cos\varphi}{\nu_{1}^{2}+\nu_{2}^{2}} - \frac{(\nu_{2}^{2}+\nu_{3}\nu_{1}^{2})\sin\varphi}{\nu_{1}^{2}+\nu_{2}^{2}} & \nu_{1} \\ \frac{(\nu_{3}-1)\nu_{1}\nu_{2}\cos\varphi}{\nu_{1}^{2}+\nu_{2}^{2}} + \frac{(\nu_{1}^{2}+\nu_{3}\nu_{2}^{2})\sin\varphi}{\nu_{1}^{2}+\nu_{2}^{2}} & \frac{(\nu_{1}^{2}+\nu_{3}\nu_{2}^{2})\cos\varphi}{\nu_{1}^{2}+\nu_{2}^{2}} - \frac{(\nu_{3}-1)\nu_{1}\nu_{2}\sin\varphi}{\nu_{1}^{2}+\nu_{2}^{2}} & \nu_{2} \\ -\nu_{1}\cos\varphi - \nu_{2}\sin\varphi & \nu_{1}\sin\varphi - \nu_{2}\cos\varphi & \nu_{3} \end{bmatrix}$$

$$(2-14)$$

Neste ponto é útil lembrar que a variável $\varphi = \varphi(s)$ mede a torção da viga ao longo da coordenada s.

Três Rotações Elementares: Devido à dificuldade de interpretar fisicamente o significado das variáveis $\nu_i(s)$ nas equações acima, é conveniente descrever as rotações da viga usando três rotações elementares consecutivas:

$$F(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) \xrightarrow{\phi_x \ (\mathbf{e}_1)} Q(\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3') \xrightarrow{\phi_y \ (\mathbf{e}_2')} R(\mathbf{e}_1'', \mathbf{e}_2'', \mathbf{e}_3'') \xrightarrow{\phi_z \ (\mathbf{e}_3'')} S(\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3)$$

$$(2-15)$$

sendo $Q(\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3) \equiv Q \in R(\mathbf{e}''_1, \mathbf{e}''_2, \mathbf{e}''_3) \equiv R$ bases intermediárias. As

matrizes de rotação, associadas a cada rotação elementar, são:

$${}^{F}\mathbf{T}^{Q} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi_{x} & -\sin \phi_{x} \\ 0 & \sin \phi_{x} & \cos \phi_{x} \end{bmatrix}, {}^{Q}\mathbf{T}^{R} = \begin{bmatrix} \cos \phi_{y} & 0 & \sin \phi_{y} \\ 0 & 1 & 0 \\ -\sin \phi_{y} & 0 & \cos \phi_{y} \end{bmatrix},$$
$${}^{R}\mathbf{T}^{S} = \begin{bmatrix} \cos \phi_{z} & -\sin \phi_{z} & 0 \\ \sin \phi_{z} & \cos \phi_{z} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Logo, usando a propriedade multiplicativa das matrizes de rotação ${}^{F}\mathbf{T}^{S} = {}^{F}\mathbf{T}^{QQ}\mathbf{T}^{RR}\mathbf{T}^{S}$, é possível encontrar a matriz ${}^{F}\mathbf{T}^{S}$ que leva a base inercial (F) a coincidir com a base dos diretores (S):

$${}^{F}\mathbf{T}^{S} = \begin{bmatrix} \cos\phi_{z}\cos\phi_{y} & -\sin\phi_{z}\cos\phi_{y} & \sin\phi_{y} \\ \sin\phi_{x}\sin\phi_{y}\cos\phi_{z} + \cos\phi_{x}\sin\phi_{z} & \cos\phi_{x}\cos\phi_{z} - \sin\phi_{x}\sin\phi_{y}\sin\phi_{z} & -\sin\phi_{x}\cos\phi_{y} \\ \sin\phi_{x}\sin\phi_{z} - \cos\phi_{x}\sin\phi_{y}\cos\phi_{z} & \cos\phi_{x}\sin\phi_{y}\sin\phi_{z} + \sin\phi_{x}\cos\phi_{z} & \cos\phi_{x}\cos\phi_{y} \\ & (2-16) \end{bmatrix}$$

Expandindo as funções trigonométricas da Eq. (2-16) em polinômios e igualando as componentes das matrizes, Eqs. (2-14) e (2-16), obtém-se:

$$\nu_{1} = +\sin \phi_{y} = +\phi_{y} - \frac{1}{6}\phi_{y}^{3} + \cdots$$

$$\nu_{2} = -\sin \phi_{x} \cos \phi_{y} = -\phi_{x} + \frac{1}{2}\phi_{x}\phi_{y}^{2} + \frac{1}{6}\phi_{x}^{3} + \cdots$$

$$\nu_{3} = +\cos \phi_{x} \cos \phi_{y} = 1 - \frac{1}{2}(\phi_{x}^{2} + \phi_{y}^{2}) + \frac{1}{4}\phi_{x}^{2}\phi_{y}^{2} + \cdots$$
(2-17)

 \mathbf{e}

$$-\nu_1 \cos \varphi - \nu_2 \sin \varphi = \sin \phi_x \sin \phi_z - \cos \phi_x \sin \phi_y \cos \phi_z$$
$$+\nu_1 \sin \varphi - \nu_2 \cos \varphi = \sin \phi_x \cos \phi_z + \cos \phi_x \sin \phi_y \sin \phi_z$$

das duas últimas equações, facilmente pode-se encontrar que:

$$\sin \varphi = \frac{\sin \phi_z (\cos \phi_x + \cos \phi_y) + \cos \phi_z \sin \phi_x \sin \phi_y}{1 + \cos \phi_x \cos \phi_y}$$
$$\cos \varphi = \frac{\cos \phi_z (\cos \phi_x + \cos \phi_y) - \sin \phi_z \sin \phi_x \sin \phi_y}{1 + \cos \phi_x \cos \phi_y}$$

Posteriomente, expandindo as funções trigonométricas $\sin(\bullet) e \cos(\bullet)$ acima, encontra-se o valor aproximado para a variável de torção:

$$\varphi \approx \phi_z + \frac{1}{2}\phi_x\phi_y - \frac{1}{6}\phi_z^3 + \cdots$$

Para finalizar, considerando polinômios de até terceira ordem, as

relações entre $\{\varphi(s), x'(s), y'(s)\}$
e $\{\phi_x(s), \phi_y(s), \phi_z(s)\}$ são:

$$\varphi(s) = \phi_z(s) + \frac{1}{2}\phi_x(s)\phi_y(s) - \frac{1}{6}\phi_z^3(s)
\nu_1(s) = \frac{x'(s)}{r'(s)} = +\phi_y(s) - \frac{1}{6}\phi_y^3(s)
\nu_2(s) = \frac{y'(s)}{r'(s)} = -\phi_x(s) + \frac{1}{2}\phi_x(s)\phi_y^2(s) + \frac{1}{6}\phi_x^3(s)$$
(2-18)

As relações encontradas na Eq. (2-18) serão de muita utilidade para resolver o problema estático e serão usadas para encontrar as funções de deslocamento da viga.

2.5 Configuração de Referência

2.5.1 Geometria de Curvas no Espaço

O sistema de equações [56]:

$$\frac{d\mathbf{r}(s)}{ds} = \mathbf{t}(s), \ \frac{d\mathbf{t}(s)}{ds} = \tau(s)\mathbf{n}(s)$$
$$\frac{d\mathbf{n}(s)}{ds} = -\kappa(s)\mathbf{t}(s) + \tau(s)\mathbf{b}(s), \ \frac{d\mathbf{b}(s)}{ds} = -\tau(s)\mathbf{n}(s)$$

usualmente referidas como as fórmulas de Frenet-Serret, formam a base

Figura 2.3: Vetores tangente, principal normal e binormal de uma curva.

da geometria diferencial das curvas no espaço. Nas equações acima $\mathbf{t}(s)$ representa o vetor unitário tangencial da curva espacial (apontando na direção crescente da coordenada s), $\mathbf{n}(s)$ representa o vetor unitário normal principal (dirigido para o centro principal de curvatura) e $\mathbf{b}(s)$ representa o vetor unitário binormal à curva na longitude de arco s desde algum ponto de referência. Os escalares $\kappa(s)$ e $\tau(s)$ são escalares positivos, e representam a curvatura e a torção geométrica da curva na longitude de arco s, respectivamente. Os significados desses símbolos são mais bem ilustrados graficamente na Fig. 2.3 e são melhor vistos se escritos na forma matricial:

$$\frac{d}{ds} \begin{bmatrix} \mathbf{t}(s) \\ \mathbf{n}(s) \\ \mathbf{b}(s) \end{bmatrix} = \begin{bmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{bmatrix} \begin{bmatrix} \mathbf{t}(s) \\ \mathbf{n}(s) \\ \mathbf{b}(s) \end{bmatrix}$$

ou, por conveniência, reordenando de uma outra forma:

$$\frac{d}{ds} \begin{bmatrix} \mathbf{n}(s) \\ \mathbf{b}(s) \\ \mathbf{t}(s) \end{bmatrix} = \begin{bmatrix} 0 & \tau(s) & -\kappa(s) \\ -\tau(s) & 0 & 0 \\ \kappa(s) & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{n}(s) \\ \mathbf{b}(s) \\ \mathbf{t}(s) \end{bmatrix}$$
(2-19)

2.5.2 Deformações de Referência

Certamente existe alguma arbitrariedade quando as deformações são definidas nas Eqs. (2-2, 2-3). Isso aparece devido à arbitrariedade da definição da base de diretores $\mathbf{d}_i(s)$ e do parâmetro s. Essa arbitrariedade é removida especificando uma deformação de referência particular devida ao estado de referência ou configuração de referência. Na configuração de referência, a base $S(\mathbf{d}_1^{\circ}(s), \mathbf{d}_2^{\circ}(s), \mathbf{d}_3^{\circ}(s)) \equiv S$ possui vetores unitários ortogonais $\mathbf{d}_i^{\circ}(s)$, e as deformações de referência são:

$${}^{S}\mathbf{v}^{\circ}(s) = \begin{bmatrix} v_{1}^{\circ}(s) & v_{2}^{\circ}(s) & v_{3}^{\circ}(s) \end{bmatrix}^{T}$$
(2-20)

$${}^{S}\mathbf{u}^{\circ}(s) = \begin{bmatrix} u_{1}^{\circ}(s) & u_{2}^{\circ}(s) & u_{3}^{\circ}(s) \end{bmatrix}^{T}$$
(2-21)

Usualmente supõe-se que o estado de referência é de energia mínima ou a configuração livre de esforços. Também, geralmente, o parâmetro s é escolhido como sendo a longitude de arco ao longo da linha de centros da configuração de referência $\mathbf{r}^{\circ}(s)$. Nesse caso, o vetor de deformação linear de referência satisfaz a relação $\frac{d\mathbf{r}^{\circ}(s)}{ds} = \mathbf{v}^{\circ}(s)$ com norma $v^{\circ}(s) = 1$. No presente trabalho, o vetor unitário de referência $\mathbf{d}_{3}^{\circ}(s)$ é escolhido como sendo paralelo ao vetor tangente à linha de centros da curva de referência. Logo, para todo s o vetor de deformação linear de referência satisfaz:

$${}^{S}\mathbf{v}^{\circ}(s) = {}^{S}\mathbf{d}_{3}^{\circ}(s) \longrightarrow v_{1}^{\circ}(s) = v_{2}^{\circ}(s) = 0, \ v_{3}^{\circ}(s) = 1$$
 (2-22)

Diferentemente do vetor de deformação linear de referência, o vetor

de deformação angular de referência é obtido usando as equações de Frenet-Serret: definindo ${}^{S}\mathbf{d}_{3}^{\circ}(s) = \mathbf{t}(s)$ o vetor unitário tangente, ${}^{S}\mathbf{d}_{1}^{\circ}(s) = \mathbf{n}(s)$ o vetor unitário normal e ${}^{S}\mathbf{d}_{2}^{\circ}(s) = \mathbf{b}(s)$ o vetor unitário binormal, logo, usando as equações de Frenet-Serret, Eq. (2-19), com curvatura $\kappa_{0}(s)$ e torção $\tau_{0}(s)$ de referência, as derivadas dos vetores unitários ${}^{S}\mathbf{d}_{i}^{\circ}(s)$ resultam:

$$\frac{d {}^{S} \mathbf{d}_{1}^{\circ}(s)}{ds} = \begin{bmatrix} 0 \quad \tau_{0}(s) & -\kappa_{0}(s) \end{bmatrix}^{T}$$
$$\frac{d {}^{S} \mathbf{d}_{2}^{\circ}(s)}{ds} = \begin{bmatrix} -\tau_{0}(s) & 0 & 0 \end{bmatrix}^{T}$$
$$\frac{d {}^{S} \mathbf{d}_{3}^{\circ}(s)}{ds} = \begin{bmatrix} \kappa_{0}(s) & 0 & 0 \end{bmatrix}^{T}$$

Por outro lado, usando a Eq. (2-9) para a base (S), as derivadas dos vetores unitários ${}^{S}\mathbf{d}_{i}^{\circ}(s)$ resultam:

$$\frac{d \, {}^{S} \mathbf{d}_{1}^{\circ}(s)}{ds} = \begin{bmatrix} 0 & u_{3}^{\circ}(s) & -u_{2}^{\circ}(s) \end{bmatrix}^{T}$$
$$\frac{d \, {}^{S} \mathbf{d}_{2}^{\circ}(s)}{ds} = \begin{bmatrix} -u_{3}^{\circ}(s) & 0 & u_{1}^{\circ}(s) \end{bmatrix}^{T}$$
$$\frac{d \, {}^{S} \mathbf{d}_{3}^{\circ}(s)}{ds} = \begin{bmatrix} u_{2}^{\circ}(s) & 0 & -u_{1}^{\circ}(s) \end{bmatrix}^{T}$$

Comparando as equações acima, percebe-se que as componentes do vetor de deformação angular, na configuração de referência, resultam:

$$u_1^{\circ}(s) = 0, \ u_2^{\circ}(s) = \kappa_0(s), \ u_3^{\circ}(s) = \tau_0(s)$$
 (2-23)

O uso de uma configuração de referência curva tem aplicação imediata na dinâmica de colunas de perfuração em poços curvos.

2.6 Equações de Movimento da Viga de Cosserat

As equações de movimento da viga de Cosserat estão deduzidas no livro de Antman [23]. Para uma viga de densidade $\rho(s)$ e área da seção transversal A(s), as leis dinâmicas são:

$$\rho(s)A(s)\frac{d^{2} \mathbf{r}(s,t)}{dt^{2}} = \frac{d \mathbf{r}(s,t)}{ds} + \mathbf{r}(s,t)$$
$$\frac{d \mathbf{r}(s,t)}{dt} = \frac{d \mathbf{r}(s,t)}{ds} + \mathbf{r}(s,t)\mathbf{r}(s,t) + \mathbf{r}(s,t)$$

sendo que:

$${}^{S}\mathbf{n}(s,t) = \begin{bmatrix} n_1(s,t) & n_2(s,t) & n_3(s,t) \end{bmatrix}^T$$
(2-24)

$${}^{S}\mathbf{m}(s,t) = \begin{bmatrix} m_1(s,t) & m_2(s,t) & m_3(s,t) \end{bmatrix}^T$$
 (2-25)

$${}^{S}\mathbf{h}(s,t) = \begin{bmatrix} h_{1}(s,t) & h_{2}(s,t) & h_{3}(s,t) \end{bmatrix}^{T}$$
(2-26)

 ${}^{S}\mathbf{n}(s,t)$ é a força de contato (interna) resultante, ${}^{S}\mathbf{m}(s,t)$ é o momento de contato (interno) resultante e ${}^{S}\mathbf{h}(s,t)$ é a quantidade de movimento angular; ${}^{S}\mathbf{f}(s,t)$ e ${}^{S}\mathbf{l}(s,t)$ denotam a densidade de força externa e densidade de momento externo prescritos (por unidade de comprimento de referência em (s,t)), respectivamente.

Supondo que as funções de deslocamento da viga satisfaçam as correspondentes equações de equilíbrio estático, obtem-se, na ausência das forças externas e da gravidade, as equações de equilíbrio estático local:

$$\frac{d \,^{s} \mathbf{n}(s)}{ds} = 0 \tag{2-27}$$

$$\frac{d^{S}\mathbf{m}(s)}{ds} + {}^{S}\tilde{\mathbf{v}}(s){}^{S}\mathbf{n}(s) = 0 \qquad (2-28)$$

sendo:

$${}^{S}\mathbf{n}(s) = \begin{bmatrix} n_{1}(s) & n_{2}(s) & n_{3}(s) \end{bmatrix}^{T}, {}^{S}\mathbf{m}(s) = \begin{bmatrix} m_{1}(s) & m_{2}(s) & m_{3}(s) \end{bmatrix}^{T}$$

Neste ponto é importante ressaltar que, devido aos diretores $d_i(s)$ não serem constantes, as derivadas $\frac{d \ ^S\mathbf{m}(s)}{ds}$ e $\frac{d \ ^S\mathbf{n}(s)}{ds}$ não são as derivadas das componentes somente. Deve ser incluido um termo adicional dado por um produto vetorial, que corresponde ao equivalente à rotação da base (S), p. ex.:

$$\frac{d \ ^{S}\mathbf{m}(s)}{ds} = \begin{bmatrix} m_{1}'(s) \\ m_{2}'(s) \\ m_{3}'(s) \end{bmatrix} + \begin{bmatrix} 0 & -u_{3}(s) & u_{2}(s) \\ u_{3}(s) & 0 & -u_{1}(s) \\ u_{2}(s) & u_{1}(s) & 0 \end{bmatrix} \begin{bmatrix} m_{1}(s) \\ m_{2}(s) \\ m_{3}(s) \end{bmatrix}$$

2.6.1 Viga sem Cisalhamento

Referindo-se à expressão do vetor de deformação linear, Eq. (2-2), é possível classificar a viga da seguinte forma: A viga é chamada inextensível se $v_3(s) \equiv 1$ é imposto como restrição. A viga é chamada sem cisalhamento se $v_1(s) = v_2(s) \equiv 0$ são impostos como restrições. Naturalmente, as três restrições podem ser impostas. Nessa situação a viga é inextensível e sem cisalhamento. Resumindo:

Inextensível
$$\rightarrow {}^{S}\mathbf{v}(s) = \begin{bmatrix} v_{1}(s) & v_{2}(s) & 1 \end{bmatrix}^{T}$$

Sem cisalhamento $\rightarrow {}^{S}\mathbf{v}(s) = \begin{bmatrix} 0 & 0 & v_{3}(s) \end{bmatrix}^{T}$ (2-29)
Inextensível e Sem cisalhamento $\rightarrow {}^{S}\mathbf{v}(s) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T}$

Para essas vigas, a força $\mathbf{n}(s)$ é desconhecida, sem uma relação constitutiva, no entanto, as deformações $\mathbf{u}(s)$ e momentos $\mathbf{m}(s)$ estão relacionados através de relações constitutivas [53].

Por outro lado, sabe-se que a norma de um vetor é um invariante, ou seja, é inalterável em qualquer sistema de referência, conseqüentemente, igualando a norma do vetor de deformação linear $\mathbf{v}(s)$ das Eqs. (2-4) e (2-29) obtém-se:

$$v_3(s) = r'(s) = \sqrt{(x'(s))^2 + (y'(s))^2 + (z'(s))^2}$$
 (2-30)

2.6.2 Equações Constitutivas

Nesta secção as propriedades do material da viga são caracterizadas, já que é necessário diferenciar entre vigas de aço, madeira, plástico ou outros materiais. Esta diferença é especificada usando as equações constitutivas do material, dadas por equações que relacionam os esforços ${}^{S}\mathbf{m}(s)$, ${}^{S}\mathbf{n}(s)$ em termos das deformações ${}^{S}\mathbf{u}(s)$, ${}^{S}\mathbf{v}(s)$ ou vice versa.

A escolha das equações constitutivas apropriadas é uma etapa importante na modelagem de vigas, já que elas descrevem o fenômeno físico. Talvez a equação mais simples seja aquela que é diagonal e linear, usada por Pai [46]. Para muitos materiais, a equação constitutiva linear é adequada. É necessário ressaltar que a viga de Cosserat pode realizar grandes deslocamentos mas mantendo pequenas deformações em cada ponto ao longo da viga. Assim, efeitos não-lineares importantes devido à mudança na geometria são levados em consideração, inclusive se o material é linear.

$${}^{S}\mathbf{n}(s) = {}^{S}\mathbf{K}(s) \left({}^{S}\mathbf{v}(s) - {}^{S}\mathbf{v}^{\circ}(s) \right)$$

$${}^{S}\mathbf{m}(s) = {}^{S}\mathbf{J}(s) \left({}^{S}\mathbf{u}(s) - {}^{S}\mathbf{u}^{\circ}(s) \right)$$

(2-31)

Nas equações acima ${}^{S}\mathbf{K}(s)$ e ${}^{S}\mathbf{J}(s)$ são matrizes simétricas que determinam a rigidez em relação a deformações lineares e angulares, respectiva-

mente. A partir das equações constitutivas é fácil verificar que os esforços na configuração de referência são nulos, ou seja, a configuração de referência está livre de esforços.

Por conveniência, a base de diretores (S) é orientada com os eixos principais associados à seção transversal. Para materiais elásticos homogêneos e isotrópicos com módulo de Young E e módulo de cisalhamento G as componentes não nulas de ${}^{S}\mathbf{K}(s)$ e ${}^{S}\mathbf{J}(s)$ são:

$$J_1 = E\Gamma_1(s), \ J_2 = E\Gamma_2(s), \ J_3 = G\Gamma_3(s)$$

 $K_1 = GA(s), \ K_2 = GA(s), \ K_3 = EA(s)$

Como exemplo, as componentes do segundo momento de área, de uma viga de secção circular uniforme, com raio interno r_i e raio externo r_e são:

$$\Gamma_1(s) = \Gamma_2(s) = \frac{\pi}{4} \left(r_e^4 - r_i^4 \right), \ \Gamma_3(s) = \Gamma_1(s) + \Gamma_2(s) = \frac{\pi}{2} \left(r_e^4 - r_i^4 \right)$$

Logo, da Eq. (2-31), as forças e momentos de contato resultam:

$${}^{S}\mathbf{n}(s) = \begin{bmatrix} K_{1} & 0 & 0 \\ 0 & K_{2} & 0 \\ 0 & 0 & K_{3} \end{bmatrix} \begin{bmatrix} v_{1}(s) \\ v_{2}(s) \\ v_{3}(s) - 1 \end{bmatrix} = \begin{bmatrix} K_{1}v_{1}(s) \\ K_{2}v_{2}(s) \\ K_{3}(v_{3}(s) - 1) \end{bmatrix}$$
(2-32)
$${}^{S}\mathbf{m}(s) = \begin{bmatrix} J_{1} & 0 & 0 \\ 0 & J_{2} & 0 \\ 0 & 0 & J_{3} \end{bmatrix} \begin{bmatrix} u_{1}(s) \\ u_{2}(s) - \kappa_{0} \\ u_{3}(s) - \tau_{0} \end{bmatrix} = \begin{bmatrix} J_{1}u_{1}(s) \\ J_{2}(u_{2}(s) - \kappa_{0}) \\ J_{3}(u_{3}(s) - \tau_{0}) \end{bmatrix}$$
(2-33)

No presente trabalho, o estudo é realizado apenas para vigas com curvatura constante $\kappa_0 = \frac{1}{R}$ e sem torção $\tau_0 = 0$. Vigas esbeltas, onde as deformações de cisalhamento são desprezíveis podem ser modeladas como vigas de Cosserat sem deformação de cisalhamento. Conseqüentemente, as equações constitutivas são:

$${}^{S}\mathbf{n}(s) = \begin{bmatrix} 0 & 0 & K_{3} (v_{3}(s) - 1) \end{bmatrix}^{T}$$

$${}^{S}\mathbf{m}(s) = \begin{bmatrix} J_{1}u_{1}(s) & J_{2} (u_{2}(s) - \kappa_{0}) & J_{3}u_{3}(s) \end{bmatrix}^{T}$$
(2-34)

2.6.3 Funções de Deslocamento da Viga de Cosserat

Usando a equação de equilíbrio estático, Eq. (2-27), as forças de contato resultam: $d^{S}\mathbf{n}(s)$

$$\frac{d^{-1}\mathbf{n}(s)}{ds} = \mathbf{0}$$

$$\begin{bmatrix} n_1'(s)\\ n_2'(s)\\ n_3'(s) \end{bmatrix} + \begin{bmatrix} 0 & -u_3(s) & u_2(s)\\ u_3(s) & 0 & -u_1(s)\\ u_2(s) & u_1(s) & 0 \end{bmatrix} \begin{bmatrix} n_1(s)\\ n_2(s)\\ n_3(s) \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

$$\begin{bmatrix} n_1'(s) - u_3(s)n_2(s) + u_2(s)n_3(s)\\ n_2'(s) + u_3(s)n_1(s) - u_1(s)n_3(s)\\ n_3'(s) - u_2(s)n_1(s) + u_1(s)n_2(s) \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$
(2-35)

Analogamente, os momentos de contato são dados por:

$$\frac{d^{S}\mathbf{m}(s)}{ds} + {}^{S}\tilde{\mathbf{v}}(s)^{S}\mathbf{n}(s) = \mathbf{0}$$

$$\begin{bmatrix} m_1'(s) \\ m_2'(s) \\ m_3'(s) \end{bmatrix} + \begin{bmatrix} 0 & -u_3(s) & u_2(s) \\ u_3(s) & 0 & -u_1(s) \\ u_2(s) & u_1(s) & 0 \end{bmatrix} \begin{bmatrix} m_1(s) \\ m_2(s) \\ m_3(s) \end{bmatrix} + \begin{bmatrix} 0 & -v_3(s) & 0 \\ v_3(s) & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} n_1(s) \\ n_2(s) \\ n_3(s) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} m_1'(s) - u_3(s)m_2(s) + u_2(s)m_3(s) - v_3(s)n_2(s) \\ m_2'(s) + u_3(s)m_1(s) - u_1(s)m_3(s) + v_3(s)n_1(s) \\ m_3'(s) - u_2(s)m_1(s) + u_1(s)m_2(s) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(2-36)

Ao invés de considerar $n_1(s) = 0$ e $n_2(s) = 0$, como ocorre na Eq. (2-34), as componentes da força de contato $n_1(s)$ e $n_2(s)$ são calculadas, como feito em Maddocks [53], das duas primeiras componentes da Eq. (2-36), resultando:

$$n_1(s) = \frac{1}{v_3(s)} \left[-m'_2(s) - u_3(s)m_1(s) + u_1(s)m_3(s) \right]$$

$$n_2(s) = \frac{1}{v_3(s)} \left[+m'_1(s) - u_3(s)m_2(s) + u_2(s)m_3(s) \right]$$

Portanto, tomando as três componentes da Eq. (2-35) e a terceira componente da Eq. (2-36), as equações diferenciais de equilíbrio estático

resultam:

$$n'_{1}(s) = u_{3}(s)n_{2}(s) - u_{2}(s)n_{3}(s)$$

$$n'_{2}(s) = u_{1}(s)n_{3}(s) - u_{3}(s)n_{1}(s)$$

$$n'_{3}(s) = u_{2}(s)n_{1}(s) - u_{1}(s)n_{2}(s)$$

$$m'_{3}(s) = u_{2}(s)m_{1}(s) - u_{1}(s)m_{2}(s)$$
(2-37)

Resumindo, o sistema de equações a ser resolvido é altamente não linear e neste trabalho é empregado o método de perturbação [10] para sua solução. Todos os cálculos são realizados simbolicamente usando o programa Maple.

2.7 Método de Perturbação

Uma viga uniforme, de comprimento L, e inicialmente curva com curvatura $\kappa_0(s) = \frac{1}{R}$, contida no plano $\mathbf{e}_2 - \mathbf{e}_3$ é considerada, Fig. 2.4. O ângulo α é introduzido para definir alternativamente a posição de um ponto na configuração de referência. Também, supõe-se que o elemento viga esteja suportado arbitrariamente nos extremos s = a = 0 e s = b = L.

Como um prelúdio para expandir as funções de deslocamento numa forma adequada para a análise de perturbação, faz-se necessário introduzir alguns parâmetros adimensionais (o símbolo barra sobre as variáveis indica a forma adimensional). As seguintes variáveis adimensionais são introduzidas:

$$\sigma = \frac{s}{L_0}, \ \bar{\mathbf{r}}(\sigma) = \frac{\mathbf{r}(s)}{L_0}, \ \bar{x}(\sigma) = \frac{x(s)}{L_0}, \ \bar{y}(\sigma) = \frac{y(s)}{L_0}, \ \bar{z}(\sigma) = \frac{z(s)}{L_0}$$

Para a viga curva de comprimento total L, é conveniente considerar o comprimento de referência L_0 como sendo o comprimento não deformado $L_0 = L$.

Da Fig. 2.4, a variável adimensional $\sigma = \frac{s}{L_0}$ varia no intervalo [0, 1] e, considerando pequenos ângulos α_0 , as componentes adimensionais do vetor de posição e rotações, para um ponto genérico σ da viga, são:

$$\bar{x}(\sigma) = \varepsilon \bar{x}_{\sigma}, \ \bar{y}(\sigma) = \varepsilon \bar{y}_{\sigma}, \ \bar{z}(\sigma) = \sigma + \varepsilon \bar{z}_{\sigma}$$

$$\phi_x(\sigma) = \varepsilon \phi_{x\sigma}, \ \phi_y(\sigma) = \varepsilon \phi_{y\sigma}, \ \phi_z(\sigma) = \varepsilon \phi_{z\sigma}$$

$$(2-38)$$

Nas equações acima $(\bar{x}_{\sigma}, \bar{y}_{\sigma}, \bar{z}_{\sigma})$ são os deslocamentos lineares ao longo das direções $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ e $(\phi_{x\sigma}, \phi_{y\sigma}, \phi_{z\sigma})$ são as rotações em torno das direções $(\mathbf{e}_1, \mathbf{e}'_2, \mathbf{e}''_3)$, como definido na Eq. (2-15). Também, ε foi introduzido

Figura 2.4: Viga de curvatura constante.

como parâmetro de perturbação. Logo, os deslocamentos e rotações de um ponto genérico σ podem ser arranjados num vetor adimensional $\bar{\mathbf{q}}_{\sigma}$, conseqüentemente, o vetor de deslocamento nodal para este ponto é:

$$\sigma = \frac{s}{L} \longrightarrow \bar{\mathbf{q}}_{\sigma} = \begin{bmatrix} \varepsilon \bar{x}_{\sigma} & \varepsilon \bar{y}_{\sigma} & \varepsilon \bar{z}_{\sigma} & \varepsilon \phi_{x\sigma} & \varepsilon \phi_{y\sigma} & \varepsilon \phi_{z\sigma} \end{bmatrix}^{T}$$

Supõe-se que os deslocamentos e rotações adimensionais nodais nas extremidades, $\sigma = 0$ (s = a) e $\sigma = 1$ (s = b), são:

$$\sigma = 0 \ (s = a) \longrightarrow \bar{\mathbf{q}}_a = \begin{bmatrix} \varepsilon \bar{x}_a & \varepsilon \bar{y}_a & \varepsilon \bar{z}_a & \varepsilon \phi_{xa} & \varepsilon \phi_{ya} & \varepsilon \phi_{za} \end{bmatrix}_T^T \quad (2-39)$$

$$\sigma = 1 \ (s = b) \longrightarrow \bar{\mathbf{q}}_b = \begin{bmatrix} \varepsilon \bar{x}_b & \varepsilon \bar{y}_b & \varepsilon \bar{z}_b & \varepsilon \phi_{xb} & \varepsilon \phi_{yb} & \varepsilon \phi_{zb} \end{bmatrix}^T$$

Logo, da Eq. (2-38), as condições de contorno para $\mathbf{\bar{r}}(\sigma) = \begin{bmatrix} \bar{x}(\sigma) & \bar{y}(\sigma) & \bar{z}(\sigma) \end{bmatrix}^T$ nos pontos $\sigma = 0$ (s = a) e $\sigma = 1$ (s = b) são:

$$\bar{x}(0) = \varepsilon \bar{x}_a, \quad \bar{y}(0) = \varepsilon \bar{y}_a, \quad \bar{z}(0) = \varepsilon \bar{z}_a \bar{x}(1) = \varepsilon \bar{x}_b, \quad \bar{y}(1) = \varepsilon \bar{y}_b, \quad \bar{z}(1) = 1 + \varepsilon \bar{z}_b$$

$$(2-40)$$

Também, substituindo as rotações nodais, Eq. (2-39), na Eq. (2-18), as condições de contorno para $\{\varphi(\sigma), \bar{x}'(\sigma), \bar{y}'(\sigma)\}$ resultam:

para $\sigma = 0$:

$$\varphi(0) = +\varepsilon\phi_{za} + \varepsilon^{2}\frac{1}{2}\phi_{xa}\phi_{ya} - \varepsilon^{3}\frac{1}{6}\phi_{za}^{3}$$

$$\frac{\bar{r}'(0)}{\bar{r}'(0)} = +\varepsilon\phi_{ya} - \varepsilon^{3}\frac{1}{6}\phi_{ya}^{3}$$

$$\frac{\bar{y}'(0)}{\bar{r}'(0)} = -\varepsilon\phi_{xa} + \varepsilon^{3}\frac{1}{2}\phi_{xa}\phi_{ya}^{2} + \varepsilon^{3}\frac{1}{6}\phi_{xa}^{3}$$

$$(2-41)$$

para $\sigma = 1$:

$$\varphi(1) = +\varepsilon\phi_{zb} + \varepsilon^2 \frac{1}{2}\phi_{xb}\phi_{yb} - \varepsilon^3 \frac{1}{6}\phi_{zb}^3$$

$$\frac{\bar{r}'(1)}{\bar{r}'(1)} = +\varepsilon\phi_{yb} - \varepsilon^3 \frac{1}{6}\phi_{yb}^3$$

$$\frac{\bar{y}'(1)}{\bar{r}'(1)} = -\varepsilon\phi_{xb} + \varepsilon^3 \frac{1}{2}\phi_{xb}\phi_{yb}^2 + \varepsilon^3 \frac{1}{6}\phi_{xb}^3$$
(2-42)

Tratando a variável ε como parâmetro de perturbação, as funções de deslocamento da viga podem ser obtidas resolvendo a equação de equilíbrio estático, Eq. (2-37), com as correspondentes condições de contorno, Eqs. (2-40), (2-41) e (2-42). No método de perturbação, a seguinte expansão polinomial é empregada [10]:

$$\bar{x}(\sigma) = \varepsilon \bar{x}_1(\sigma) + \varepsilon^2 \bar{x}_2(\sigma) + \cdots
\bar{y}(\sigma) = \varepsilon \bar{y}_1(\sigma) + \varepsilon^2 \bar{y}_2(\sigma) + \cdots
\bar{z}(\sigma) = \sigma + \varepsilon \bar{z}_1(\sigma) + \varepsilon^2 \bar{z}_2(\sigma) + \cdots
\varphi(\sigma) = \varepsilon \varphi_1(\sigma) + \varepsilon^2 \varphi_2(\sigma) + \cdots$$
(2-43)

Substituindo a Eq. (2-43) na Eq. (2-37) e levando em conta que $\{\bar{x}_i(\sigma), \bar{y}_i(\sigma), \bar{z}_i(\sigma), \varphi_i(\sigma)\}\$ são independentes de ε , os coeficientes de cada potencia de ε são igualados a zero. Isto leva a um conjunto de equações diferenciais lineares ordinárias, com suas respectivas condições de contorno, que são resolvidas simbolicamente usando o programa Maple. Conseqüentemente, a solução aproximada é obtida e os termos de primeira ordem são:

$$\bar{x}_{1}(\sigma) = \bar{x}_{a} + \phi_{ya}\sigma - (2\phi_{ya} + \phi_{yb} + 3\bar{x}_{a} - 3\bar{x}_{b})\sigma^{2} + (\phi_{ya} + \phi_{yb} + 2\bar{x}_{a} - 2\bar{x}_{b})\sigma^{3}$$

$$\bar{y}_{1}(\sigma) = \bar{y}_{a} + \phi_{xa}\sigma - (2\phi_{xa} + \phi_{xb} - 3\bar{y}_{a} + 3\bar{y}_{b})\sigma^{2} + (\phi_{xa} + \phi_{xb} - 2\bar{y}_{a} + 2\bar{y}_{b})\sigma^{3}$$

$$\bar{z}_{1}(\sigma) = \bar{z}_{a} + (\bar{z}_{b} - \bar{z}_{a})\sigma$$

$$\varphi_{1}(\sigma) = \phi_{za} + (\phi_{zb} - \phi_{za})\sigma$$

Para investigar deformações de até segunda ordem em ε é necessário

truncar a Eq. (2-43) até os termos que contenham ε^2 . Fazendo isso, resulta, por exemplo:

$$\bar{x}_2(\sigma) = c_{13}\sigma + c_{14}\sigma^2 + c_{15}\sigma^3 + c_{16}\sigma^4 + c_{17}\sigma^5$$

com constantes:

$$c_{13} = (\bar{z}_b - \bar{z}_a) \phi_{ya} + \frac{1}{2} \phi_{xa} \phi_{za}$$

$$\vdots$$

$$c_{17} = \frac{K_3}{20J_2} (\bar{z}_b - \bar{z}_a) (\phi_{ya} + \phi_{yb} + 2\bar{x}_a - 2\bar{x}_b)$$

Finalmente, os deslocamentos genéricos da viga, para s = [0, L], são:

$$\begin{aligned} x(s) &= L_0 \bar{x}(\sigma) \longrightarrow x(s) &= \varepsilon x_1(s) + \varepsilon^2 x_2(s) \\ y(s) &= L_0 \bar{y}(\sigma) \longrightarrow y(s) &= \varepsilon y_1(s) + \varepsilon^2 y_2(s) \\ z(s) &= L_0 \bar{z}(\sigma) \longrightarrow z(s) &= s + \varepsilon z_1(s) + \varepsilon^2 z_2(s) \\ \varphi(s) &= \varepsilon \varphi_1(s) + \varepsilon^2 \varphi_2(s) \end{aligned}$$

sendo:

$$\begin{aligned} x_1(s) &= x_a + \phi_{ya}s - \frac{2L\phi_{ya} + L\phi_{yb} + 3x_a - 3x_b}{L^2}s^2 + \frac{L\phi_{ya} + L\phi_{yb} + 2x_a - 2x_b}{L^3}s^3 \\ y_1(s) &= y_a + \phi_{xa}s - \frac{2L\phi_{xa} + L\phi_{xb} - 3y_a + 3y_b}{L^2}s^2 + \frac{L\phi_{xa} + L\phi_{xb} - 2y_a + 2y_b}{L^3}s^3 \\ z_1(s) &= z_a + \frac{z_b - z_a}{L}s \\ \varphi_1(s) &= \phi_{za} + \frac{\phi_{zb} - \phi_{za}}{L}s \\ x_2(s) &= c_{13}s + c_{14}s^2 + c_{15}s^3 + c_{16}s^4 + c_{17}s^5 \\ y_2(s) &= c_{18}s + c_{19}s^2 + c_{20}s^3 + c_{21}s^4 + c_{22}s^5 \\ z_2(s) &= c_{23}s + c_{24}s^2 + c_{25}s^3 + c_{26}s^4 + c_{27}s^5 \\ \varphi_2(s) &= c_{28}s + c_{29}s^2 + c_{30}s^3 + c_{31}s^4 \end{aligned}$$

е		
		(1,, 0) $(1,, 0)$ $(1,, 1,, 0)$
c_1	=	$x_a; c_2 = \phi_{ya}; c_3 = -(L\phi_{yb} + 2\phi_{ya}L + 3x_a - 3x_b)/L^-; c_4 = (L\phi_{yb} + \phi_{ya}L + 2x_a - 2x_b)/L^-$
c_5	=	$z_a; c_6 = -(z_a - z_b)/L; c_7 = y_a; c_8 = -\phi_{xa}; c_9 = (L\phi_{xb} + 2\phi_{xa}L - 3y_a + 3y_b)/L^2$
c_{10}	=	$-(L\phi_{xb} + \phi_{xa}L - 2y_a + 2y_b)/L^3; \ c_{11} = \phi_{za}; \ c_{12} = -(\phi_{za} - \phi_{zb})/L; \ c_{13} = 1/2\phi_{xa}\phi_{za} + c_2c_6$
c_{14}	=	$1/60(6c_4K_3c_6L^4 - 30J_2c_{10}c_{12}L^3 + 5c_3K_3c_6L^3 - 15c_{10}J_3c_{12}L^3 + 30c_{12}J_1c_{10}L^3 - $
		$180c_{6}c_{4}L^{2}J_{2} - 60J_{2}\phi_{xa}\phi_{za} - 30\phi_{xb}\phi_{zb}J_{2} - 120c_{6}c_{3}LJ_{2} - 180c_{2}c_{6}J_{2})/(LJ_{2})$
c_{15}	=	$-1/60 (9 c_4 K_3 c_6 L^4 - 60 J_2 c_{10} c_{12} L^3 + 10 c_3 K_3 c_6 L^3 - 30 c_{10} J_3 c_{12} L^3 + 60 c_{12} J_1 c_{10} L^3 - $
		$180c_{6}c_{4}L^{2}J_{2} - 30J_{2}\phi_{xa}\phi_{za} - 30\phi_{xb}\phi_{zb}J_{2} - 120c_{6}c_{3}LJ_{2} - 120c_{2}c_{6}J_{2})/(L^{2}J_{2})$
c_{16}	=	$1/12(6c_{12}J_{1}c_{10} - 6J_{2}c_{10}c_{12} + c_{3}K_{3}c_{6} - 3c_{10}J_{3}c_{12})/J_{2}; \ c_{17} = 1/20c_{4}K_{3}c_{6}/J_{2}; \ c_{18} = 1/2\phi_{ya}\phi_{za} + c_{8}c_{6}/J_{2}$
c_{19}	=	$1/60(6c_{10}K_{3}c_{6}L^{4} + 5c_{9}K_{3}c_{6}L^{3} + 15c_{4}J_{3}c_{12}L^{3} + 30J_{1}c_{4}c_{1}2L^{3} - 30c_{12}J_{2}c_{4}L^{3}$
		$-180c_6c_{10}L^2J_1 - 60J_1\phi_{ya}\phi_{za} - 30\phi_{yb}\phi_{zb}J_1 - 120c_6c_9LJ_1 - 180c_8c_6J_1)/(LJ_1)$
c_{20}	=	$-1/60(9c_{10}K_{3}c_{6}L^{4} + 10c_{9}K_{3}c_{6}L^{3} + 30c_{4}J_{3}c_{12}L^{3} + 60J_{1}c_{4}c_{12}L^{3} - 60c_{12}J_{2}c_{4}L^{3}$
		$-180c_6c_{10}L^2J_1 - 30J_1\phi_{ya}\phi_{za} - 30\phi_{yb}\phi_{zb}J_1 - 120c_6c_9LJ_1 - 120c_8c_6J_1)/(L^2J_1)$
c_{21}	=	$1/12(-6c_{12}J_2c_4 + c_9K_3c_6 + 3c_4J_3c_{12} + 6J_1c_4c_{12})/J_1; \ c_{22} = 1/20c_{10}K_3c_6/J_1$
c_{23}	=	$1/30L(27L^{3}c_{4}^{2}K_{3}+27L^{3}c_{10}^{2}K_{3}+45L^{2}c_{9}c_{10}K_{3}+45L^{2}c_{3}c_{4}K_{3}+30Lc_{8}c_{10}K_{3}+20Lc_{9}^{2}K_{3}+180LJ_{1}c_{10}^{2}K_{3}+20Lc_{9}^{2}K_{3}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}^{2}K_{1}+180LJ_{1}c_{10}$
		$+ 180 L c_4^2 J_2 + 30 L c_2 c_4 K_3 + 20 L c_3^2 K_3 + 30 K_3 c_2 c_3 + 30 K_3 c_8 c_9 + 180 c_3 J_2 c_4 + 180 c_9 J_1 c_1 0) / K_3 + 10 K_3 c_8 c_9 + 10 K_3 c_8 c_8 c_8 c_8 c_8 c_8 c_8 c_8 c_8 c_8$
c_{24}	=	$-(6c_9J_1c_{10} + K_3c_2c_3 + K_3c_8c_9 + 6c_3J_2c_4)/K_3$
c_{25}	=	$-1/3(2c_9^2K_3 + 18J_1c_{10}^2 + 18c_4^2J_2 + 3K_3c_8c_{10} + 2c_3^2K_3 + 3K_3c_2c_4)/K_3$
c_{26}	=	$-3/2c_9c_{10} - 3/2c_3c_4; \ c_{27} = -9/10c_4^2 - 9/10c_{10}^2$
c_{28}	=	$\frac{1}{2L}\left(-6c_4c_{10}L^2J_2+6c_4c_{10}L^2J_1-4Lc_9J_2c_4-4Lc_{10}J_2c_3\right)$
		$+2 L J_3 c_4 c_9-2 L J_3 c_3 c_{10}+4 L c_3 J_1 c_{10}+4 L c_4 J_1 c_9+3 J_3 c_4 c_8-3 J_3 c_2 c_{10}-4 c_9 J_2 c_3+4 c_3 J_1 c_9)/J_3$
c_{29}	=	$-1/2(-3J_3c_2c_{10} - 4c_9J_2c_3 + 4c_3J_1c_9 + 3J_3c_4c_8)/J_3$
c_{30}	=	$-(-J_3c_3c_{10} - 2c_9J_2c_4 - 2c_{10}J_2c_3 + J_3c_4c_9 + 2c_3J_1c_{10} + 2c_4J_1c_9)/J_3; \ c_{31} = -3c_4c_{10}(-J_2 + J_1)/J_3$

A título de ilustração, na Fig. 2.5 mostram-se diferentes configurações deformadas da viga de Cosserat para várias condições de contorno.

Figura 2.5: Configurações deformadas.

As soluções obtidas acima são parecidas com as soluções reportadas por Cao et. al. [66] e Bazoune et. al. [48] quando as deformações de cisalhamento são desprezíveis. Vale a pena ressaltar que os resultados da solução da equação de equilíbrio estático, foram apresentados no CILAMCE-2005 [57].

~

Em dinâmica, o movimento quase estático da viga pode ser estudado com deslocamentos e rotações nodais variáveis no tempo. Conseqüentemente, para a análise dinâmica, as funções de deslocamento, em qualquer ponto de viga de Cosserat, podem ser expressas na seguinte forma (o parâmetro ε é avaliado como $\varepsilon = 1$):

$$\begin{aligned} x(s,t) &= x_1(s,t) + x_2(s,t) \\ y(s,t) &= y_1(s,t) + y_2(s,t) \\ z(s,t) &= s + z_1(s,t) + z_2(s,t) \\ \varphi(s,t) &= \varphi_1(s,t) + \varphi_2(s,t) \end{aligned}$$
(2-44)

A dinâmica da viga de Cosserat será tratada no capítulo siguente.