5. ANÁLISE DE RESÍDUOS

No Capítulo 4 foram propostas metodologias para estimar o volume de óleo recuperável. Porém, após investigar o modelo que melhor se ajusta aos dados históricos, deve-se analisar ainda o resíduo, que é a diferença entre os dados observados e os valores ajustados pelo modelo (calculado).

O objetivo principal deste capítulo é fornecer uma metodologia para verificar se os modelos propostos no Capítulo 4 capturam toda a estrutura de dependência na variável a ser modelada, ou seja, se os modelos capturam toda a informação contida nos dados.

Se o modelo for adequado, espera-se que os resíduos não apresentem nenhum padrão bem definido, i.e., possam ser classificados como ruído branco. Caso contrário, se existir estrutura de dependência no resíduo e este puder ser modelado, não podemos classificá-lo como ruído branco e, conseqüentemente, o modelo deverá ser modificado para incluir esta explicação adicional.

Para classificar o resíduo como sendo ruído branco, deve-se investigar se os resíduos são independentes e identicamente distribuídos (i.i.d.) de média zero. Para tanto, utiliza-se o Teste BDS (Brock *et al.*, 1987) que tem como hipótese nula (H₀) a classificação do resíduo como sendo i.i.d. e hipótese alternativa (H₁) a presença de dependência linear ou não linear nos resíduos.

Em Estatística, define-se hipótese nula como sendo uma hipótese que é presumida verdadeira até que provas estatísticas sob a forma de testes de hipóteses indiquem o contrário. Por outro lado, a hipótese alternativa representa a negação da hipótese nula.

A necessidade de caracterizar dependência não linear em séries temporais estimulou o desenvolvimento do Teste BDS que levou o nome dos pesquisadores que o criaram: William Brock, Davis Dechert e José Alexandre Sheinkman.

Segundo Gazola & Caratori (2003), o BDS passou a ser amplamente utilizado em diversas áreas e tornou-se o teste mais conhecido para detectar estruturas não lineares presentes em uma série temporal.

5.1. A INTEGRAL DE CORRELAÇÃO

O Teste BDS utiliza o conceito da correlação espacial dos termos da série dentro de um espaço de dimensão "m". Baseia-se numa integral de correlação definida pela expressão:

$$C_{m,T}(\varepsilon) = \sum_{t < s} I_{\varepsilon}(x_t^m, x_s^m) \cdot \left[\frac{2}{T_m(T_m - 1)} \right]$$
 (1)

Onde:

T é o tamanho da amostra;

 $T_m=T-m+1$ representa o número de vetores x_t^m ;

$$x_t^m = (x_t, x_{t+1}, ..., x_{t+m-1})_{,}$$

$$I_{\varepsilon}(x_t^m, x_s^m) = 1, se ||x_t^m - x_s^m|| < \varepsilon$$

= 0, caso contrário.

 ε = distância arbitrária;

t e s são instantes de tempo com s=t+1.

Para uma melhor compreensão, considere o exemplo proposto por Gazola & Caratori (2003), cuja série histórica está apresentada na Tabela 2.

Tabela 1 – Série histórica proposta composta por 10 observações.

t=1	-0,617527				
t=2	1,492318				
t=3	-1,931585				
t=4	-0,782284				
t=5	0,461741				
t=6	-0,244256				
t=7	0,454955				
t=8	-1,970666				
t=9	-2,166198				
t=10	0,385075				

Fonte: Gazola & Caratori (2003).

Da tabela, obtém-se o tamanho da amostra T=10. Considerando um espaço de dimensão m=3, calcula-se o valor $T_m = (T-m+1) \Rightarrow$ $T_m = (10-3+1) \Rightarrow T_m = 8$ vetores $x_t^m = (x_t, x_{t+1}, ..., x_{t+m-1})$. Por exemplo, para t=1 e s=2, temos:

$$x_t^m = x_1^3 = (x_1, x_2, x_{1+3-1}) \Rightarrow x_1^3 = (x_1, x_2, x_3)$$

$$x_s^m = x_2^3 = (x_2, x_3, x_{2+3-1}) \Rightarrow x_2^3 = (x_2, x_3, x_4)$$

Analogamente,

$$x_{t}^{m} = x_{1}^{3} = (x_{1}, x_{2}, x_{3}) \qquad \Rightarrow \qquad x_{s}^{m} = x_{2}^{3} = (x_{2}, x_{3}, x_{4})$$

$$x_{t}^{m} = x_{2}^{3} = (x_{2}, x_{3}, x_{4}) \qquad \Rightarrow \qquad x_{s}^{m} = x_{3}^{3} = (x_{3}, x_{4}, x_{5})$$

$$\vdots \qquad \qquad \Rightarrow \qquad x_{s}^{m} = x_{4}^{3} = (x_{4}, x_{5}, x_{6})$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$x_{t}^{m} = x_{7}^{3} = (x_{7}, x_{8}, x_{9}) \qquad \Rightarrow \qquad x_{s}^{m} = x_{8}^{3} = (x_{8}, x_{9}, x_{10})$$

$$x_{T_{m}}^{m} = x_{8}^{3} = (x_{8}, x_{9}, x_{10}) \qquad \Rightarrow \qquad ---$$

Calcula-se $I_{ts} = ||x_t^m - x_s^m|| = ||x_t - x_s, x_{t+1} - x_{s+1}, ..., x_{t+m-1} - x_{s+m-1}||$. Para t=1 e s=2, temos:

$$I_{12} = ||x_1^3 - x_2^3|| = ||x_1 - x_2, x_2 - x_3, x_3 - x_4|| = ||-2,1098; 3,4239; -1,1493||$$

Repete-se este procedimento para todos os pares I_{ts} (de I_{12} a I_{78}). A Tabela 3 mostra o cálculo realizado para alguns destes pares.

Tabela 2 - Cálculo dos pares Its.

$I_{t,s}$	I _{1,3}	I _{1,4}	•••	I _{1,8}	I _{2,3}	 I _{2,8}	I _{3,4}		I _{7.8}
$x_t - x_s$	1,3140	0,1647		1,3531	3,4239	 3,4629	-1,1493	:	2,4256
$x_{t+1} - x_{s+1}$	2,2746	1,0305		3,6585	-1,1493	 0,2346	-1,2440		0,1955
$x_{t+m-1} - x_{s+m-1}$	-2,3933	-1,6873		-2,3166	-1,2440	 -1,1673	0,7059		-2,5512

Fonte: o autor.

 $\mbox{Em seguida, calcula-se a norma de cada um dos vetores I_{ts}. Por exemplo,} \\ \mbox{para a norma I_{12}, temos:}$

$$I_{12} = \sqrt[2]{(-2,10985)^2 + (3,42390)^2 + (-1,14930)^2} = 4,182756$$

Analogamente, a Tabela 4 mostra o cálculo realizado da norma de alguns pares $I_{\rm ts}$.

Tabela 3 – Cálculo das normas dos pares I_{ts}.

I _{1,3}	$I_{1,4}$	 I _{1,8}	I _{2,3}	 I _{2,8}	I _{3,4}	 I _{7.8}
3,5536	1,9840	 4,5368	3,8198	 3,6619	1,8349	 3,5257

Fonte: o autor.

O próximo passo refere-se à escolha da distância arbitrária de tamanho " ϵ ". Esta distância deve atender à seguinte condição: $0 < \varepsilon < \max x_t - \min x_t$. Caso a norma seja menor do que " ϵ ", então $I_{\varepsilon}(x_t^m, x_s^m) = 1$. Caso contrário, $I_{\varepsilon}(x_t^m, x_s^m) = 0$.

Finalmente, calcula-se a integral de correlação definida anteriormente (Equação 72). Para a série dada, o valor da integral de correlação é 0,29. Este valor representa a razão entre o número de pares de pontos onde a distância entre eles é menor do que "ε"e o número de pares total.

Quanto maior o valor da integral de correlação C_{m,T} (ε), maior a estrutura de dependência na série. Processos com estrutura de dependência geram séries cujos termos encontram-se mais espacialmente correlacionados do que em séries geradas por processos aleatórios, como o ruído branco.

Se o valor de " ϵ " é escolhido tal que todos os pares atendam à condição acima, então $C_{m,T}(\epsilon)$ =1. Da mesma forma, se " ϵ " for escolhido tal que nenhum par atenda a condição, então $C_{m,T}(\epsilon)$ = 0.

Além disso, se $x_t^m e x_s^m$ estiverem muito "próximos", então a integral de correlação assumirá um valor próximo a 1. Caso contrário, se $x_t^m e x_s^m$ estiverem "longe", então a integral de correlação assumirá um valor próximo de zero.

5.2. A ESTATÍSTICA BDS

Considere a probabilidade de qualquer par de observações (x_i, x_j) diste ao máximo de " ϵ " um do outro. Então,

$$P_1 \equiv P(||x_i - x_j|| \le \varepsilon)$$
 para todo inteiro $i \ne j$ (2)

Definindo a probabilidade "P₂" como sendo a probabilidade de duas observações estarem próximas uma da outra, assim como pela probabilidade de seus predecessores estarem próximos um do outro, temos:

$$P_{2} \equiv P(||x_{i} - x_{j}|| \le \varepsilon, ||x_{i-1} - x_{j-1}|| \le \varepsilon)$$
 para todo inteiro i \neq j (3)

Quando a série x_t for i.i.d, $P_1 = P(||x_i - x_j|| \le \varepsilon) = P(||x_{i-1} - x_{j-1}|| \le \varepsilon)$, então:

$$P_2 = P_1^2 \text{ (se } x_t = i.i.d)$$
 (4)

A partir deste princípio, o teste BDS sobre uma dimensão "m" tem como hipótese nula que as probabilidades acima são iguais. Logo, temos:

$$H_0: P_m = P_1^m \qquad H_1: P_m \neq P_1^m$$
 (5)

que equivale a testar:

$$H_0: x_t = i.i.d. ag{6}$$

A probabilidade P_m é estimada pela integral de correlação $C_{m,T}$ (ϵ). Conforme visto anteriormente, este valor representa a fração dos pares de pontos (x_t^m, x_s^m) que distam no máximo " ϵ " um do outro, isto é, $\|x_t^m, x_s^m\| < \epsilon$.

Brock *et al.* (1987) demonstraram, que sob a hipótese nula das observações i.i.d., $C_m(\varepsilon) = [C_1(\varepsilon)]^m$ e que $C_{m,T}(\varepsilon) - [C_{1,T}(\varepsilon)]^m$ possui uma distribuição assintótica normal com média 0 e variância:

$$\sigma_{m,T}^{2}(\varepsilon) = 4 \left[K^{m} + 2 \sum_{j=1}^{m-1} K^{m-j} C^{2j} + (m-1)^{2} C^{2m} - m^{2} K C^{2m-2} \right]$$
 (7)

Onde:

 $C = C_{1.T}(\varepsilon) \Rightarrow C$ é estimado pela integral de correlação de tamanho 1.

$$K_{T}(\varepsilon) = \frac{2}{T_{m}(T_{m}-1)(T_{m}-2)} \sum_{t \leq s \leq r} \{I_{\varepsilon}(X_{t,}X_{s})I_{\varepsilon}(X_{s,}X_{r}) + I_{\varepsilon}(X_{t,}X_{r})I_{\varepsilon}(X_{r,}X_{s}) + I_{\varepsilon}(X_{s,}X_{t})I_{\varepsilon}(X_{t,}X_{r})\} (8)$$

Portanto, sob a hipótese nula (i.i.d.), a estatística do teste BDS tem uma distribuição assintótica normal definida como sendo:

$$BDS_{m,T}(\varepsilon) = \frac{\sqrt{T} \left[C_{m,T}(\varepsilon) - (C_{1,T}(\varepsilon))^m \right]}{\sigma_{m,T}(\varepsilon)}$$
(9)

Caso $C_{m,T}(\varepsilon) - [C_{1,T}(\varepsilon)]^m$ seja significativo, implica num valor "grande" da estatística $BDS_{m,T}(\varepsilon)$, caindo na região crítica (RC) da distribuição normal ilustrada na Figura 28, na qual rejeita-se H_0 . Por outro lado, para $C_{m,T}(\varepsilon) - [C_{1,T}(\varepsilon)]^m$ pouco significativo, a estatística $BDS_{m,T}(\varepsilon)$ é "pequena", caindo na região de aceitação (RA), logo não há evidência para rejeitar H_0 .

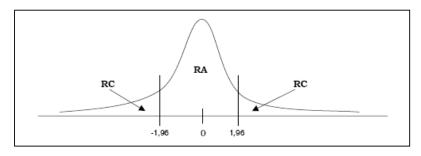


Figura 1 – Região de aceitação e crítica do Teste BDS para o intervalo de confiança 95%. Fonte: Gazola & Caratori (2003).

Para mostrar os limites da região de aceitação (RA), utilizou-se na Figura 28 um intervalo de confiança de 95,0% ($Z=\pm 1,96$). Assim sendo, se os valores da estatística $BDS_{m,T}(\varepsilon)$ encontram-se no intervalo [-1,96; 1,96], para diferentes valores de "m" e " ε ", então o teste aceita a hipótese nula (H₀) com um nível de significância $\alpha=5\%$.

Em Estatística, um resultado é significante se for improvável que tenha ocorrido por acaso. A significância de um teste, também chamada de *p-value*, é a probabilidade máxima de rejeitar acidentalmente uma hipótese verdadeira (uma decisão conhecida como erro de tipo I).

É relevante observar que um resultado "significante ao nível de 1%" é mais significante do que um resultado ao nível de 5%. No entanto, um teste ao nível de 1% é mais susceptível de padecer do erro de tipo II (falsamente aceitar uma hipótese inválida) do que um teste de 5%. O melhor resultado que se pode obter é um equilíbrio entre significância e poder, em outras palavras, entre os erros de tipo I e tipo II.

5.3. ESCOLHA DE PARÂMETROS

Nota-se pela Equação 80 que a estatística BDS é uma função de dois parâmetros a serem arbitrados: "m" e "ε". Segundo Gazola & Caratori (2003), não existe qualquer teoria totalmente satisfatória para a escolha destes parâmetros.

Brock *et. al.* (1991) realizaram estudos empíricos através da simulação de Monte Carlo, buscando estabelecer um conjunto de valores viáveis para as escolhas dos parâmetros "m" e " ϵ ". Escolhe-se o parâmetro " ϵ " em unidades do desvio padrão da série, usualmente entre 0.5σ e 2.0σ . Em relação à dimensão "m", Brock *et. al.* (1991) recomendam usar "m" entre 2 e 10. Para séries com 200 a 500 observações, "m" deve ser escolhido entre 2 e 5.

Entretanto, segundo Brock *et. al.* (1991), a Equação 80 é somente adequada para valores T/m> 200. Em amostras pequenas, a estatística BDS pode apresentar uma distribuição diferente da distribuição normal. Como o presente estudo trata de séries anuais, dificilmente encontraremos um valor T/m> 200.

Neste caso, Brock *et. al.* (1991) propõem a utilização da técnica *bootstrap*¹ para o cálculo da estatística BDS. O *software* utilizado no Capítulo 6 para a execução do Teste BDS oferece uma opção de cálculo dos *p-values* através da técnica *bootstrap*.

Quando a técnica *bootstrap* é solicitada, realiza-se uma série de repetições onde, para cada repetição, um conjunto de observações é extraído aleatoriamente sem substituição dos dados originais.

¹Utilizou-se Bootstrap com 10000 repetições para os conjuntos de dados testados.